Early and accurate detection of viruses in clinical and environmental samples is essential for effective public healthcare, treatment, and therapeutics. While PCR detects potential pathogens with high sensitivity, it is difficult to scale and requires knowledge of the exact sequence of the pathogen. With the advent of next-gen single-cell sequencing, it is now possible to scrutinize viral transcriptomics at the finest possible resolution–cells. This newfound ability to investigate individual cells opens new avenues to understand viral pathophysiology with unprecedented resolution. To leverage this ability, we propose an efficient and accurate computational pipeline, named Venus, for virus detection and integration site discovery in both single-cell and bulk-tissue RNA-seq data. Specifically, Venus addresses two main questions: whether a tissue/cell type is infected by viruses or a virus of interest? And if infected, whether and where has the virus inserted itself into the human genome? Our analysis can be broken into two parts–validation and discovery. Firstly, for validation, we applied Venus on well-studied viral datasets, such as HBV- hepatocellular carcinoma and HIV-infection treated with antiretroviral therapy. Secondly, for discovery, we analyzed datasets such as HIV-infected neurological patients and deeply sequenced T-cells. We detected viral transcripts in the novel target of the brain and high-confidence integration sites in immune cells. In conclusion, here we describe Venus, a publicly available software which we believe will be a valuable virus investigation tool for the scientific community at large.
Network embedding which assigns nodes in networks to lowdimensional representations has received increasing attention in recent years. However, most existing approaches, especially the spectral-based methods, only consider the attributes in homogeneous networks. They are weak for heterogeneous attributed networks that involve different node types as well as rich node attributes and are common in real-world scenarios. In this paper, we propose HANE, a novel network embedding method based on Graph Convolutional Networks, that leverages both the heterogeneity and the node attributes to generate high-quality embeddings. The experiments on the real-world dataset show the effectiveness of our method.
Multivariate Time Series (MTS) forecasting is an essential problem in many fields. Accurate forecasting results can effectively help in making decisions. To date, many MTS forecasting methods have been proposed and widely applied. However, these methods assume that the predicted value of a single variable is affected by all other variables, ignoring the causal relationship among variables. To address the above issue, we propose a novel end-to-end deep learning model, termed graph neural network with neural Granger causality, namely CauGNN, in this paper. To characterize the causal information among variables, we introduce the neural Granger causality graph in our model. Each variable is regarded as a graph node, and each edge represents the casual relationship between variables. In addition, convolutional neural network filters with different perception scales are used for time series feature extraction, to generate the feature of each node. Finally, the graph neural network is adopted to tackle the forecasting problem of the graph structure generated by the MTS. Three benchmark datasets from the real world are used to evaluate the proposed CauGNN, and comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.