The paper is divided into three different parts, which use the residue theorem to solve several different integrals, namely, the Euler integral, the Gaussian integral, the Fresnel integral, and so forth. The process of using the resiude theorem to determine these integrals is to first turn the integrals into convenient forms of complex integrals, and then find integral perimeters so that any integral on one of the curves is the required integral, through the drawing observation of the contour to write the original integral into the form of multiple integral. By studying the resiude theorem to solve the problem of complex integrals, it is demonstrated that the resiude theorem is actually a process that makes the calculation easier. These solved integrals have a wide range of applications including the study of the refraction of light, analytics, probability theory, combinatorial mathematics, and unification of the continuous Fourier transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.