Objective— Interleukin (IL)-17A is regarded as an important cytokine to drive psoriasis, an inflammatory skin disease marked by increased cardiovascular mortality. We aimed to test the hypothesis that overproduction of IL-17A in the skin leading to dermal inflammation may systemically cause vascular dysfunction in psoriasis-like skin disease. Approach and Results— Conditional overexpression of IL-17A in keratinocytes caused severe psoriasis-like skin inflammation in mice (K14-IL-17A ind/+ mice), associated with increased reactive oxygen species formation and circulating CD11b + inflammatory leukocytes in blood, with endothelial dysfunction, increased systolic blood pressure, left ventricular hypertrophy, and reduced survival compared with controls. In K14-IL-17A ind/+ mice, immunohistochemistry and flow cytometry revealed increased vascular production of the nitric oxide/superoxide reaction product peroxynitrite and infiltration of the vasculature with myeloperoxidase + CD11b + GR1 + F4/80 − cells accompanied by increased expression of the inducible nitric oxide synthase and the nicotinamide dinucleotide phosphate (NADPH) oxidase, nox2. Neutrophil depletion by anti-GR-1 antibody injections reduced oxidative stress in blood and vessels. Neutralization of tumor necrosis factor-α and IL-6 (both downstream of IL-17A) reduced skin lesions, attenuated oxidative stress in heart and blood, and partially improved endothelial dysfunction in K14-IL-17A ind/+ mice. Conclusions— Dermal overexpression of IL-17A induces systemic endothelial dysfunction, vascular oxidative stress, arterial hypertension, and increases mortality mainly driven by myeloperoxidase + CD11b + GR1 + F4/80 − inflammatory cells. Depletion of the GR-1 + immune cells or neutralization of IL-17A downstream cytokines by biologicals attenuates the vascular phenotype in K14-IL-17A ind/+ mice.
Background The ongoing coronavirus disease 2019 (COVID-2019) pandemic has swept all over the world, posing a great pressure on critical care resources due to large number of patients needing critical care. Statements from front-line experts in the field of intensive care are urgently needed. Methods Sixteen front-line experts in China fighting against the COVID-19 epidemic in Wuhan were organized to develop an expert statement after 5 rounds of expert seminars and discussions to provide trustworthy recommendation on the management of critically ill COVID-19 patients. Each expert was assigned tasks within their field of expertise to provide draft statements and rationale. Parts of the expert statement are based on epidemiological and clinical evidence, without available scientific evidences. Results A comprehensive document with 46 statements are presented, including protection of medical personnel, etiological treatment, diagnosis and treatment of tissue and organ functional impairment, psychological interventions, immunity therapy, nutritional support, and transportation of critically ill COVID-19 patients. Among them, 5 recommendations were strong (Grade 1), 21 were weak (Grade 2), and 20 were experts’ opinions. A strong agreement from voting participants was obtained for all recommendations. Conclusion There are still no targeted therapies for COVID-19 patients. Dynamic monitoring and supportive treatment for the restoration of tissue vascularization and organ function are particularly important.
BackgroundFibroblast growth factor 21 (FGF-21) is a metabolic regulator with multiple beneficial effects on glucose homeostasis and lipid metabolism in animal models. The relationship between plasma levels of FGF-21 and coronary heart disease (CHD) in unknown.Methodology/Principal FindingsThis study aimed to investigate the correlation of serum FGF-21 levels and lipid metabolism in the patients with coronary heart disease. We performed a logistic regression analysis of the relation between serum levels of FGF-21 and CHD patients with and without diabetes and hypertension. This study was conducted in the Departments of Endocrinology and Cardiovascular Diseases at two University Hospitals. Participants consisted of one hundred and thirty-five patients who have been diagnosed to have CHD and sixty-one control subjects. Serum FGF-21 level and levels of fasting blood glucose; triglyceride; apolipoprotein B100; HOMA-IR; insulin; total cholesterol; HDL-cholesterol; LDL-cholesterol; and C-reactive protein were measured. We found that median serum FGF-21 levels were significantly higher in CHD than that of control subjects (P<0.0001). Serum FGF-21 levels in CHD patients with diabetes, hypertension, or both were higher than that of patients without these comorbidities. Serum FGF-21 levels correlated positively with triglycerides, fasting blood glucose, apolipoprotein B100, insulin and HOMA-IR but negatively with HDL-C and apolipoprotein A1 after adjusting for BMI, diabetes and hypertension. Logistic regression analysis demonstrated that FGF-21 showed an independent association with triglyceride and apolipoprotein A1.Conclusions/SignificanceHigh levels of FGF-21 are associated with adverse lipid profiles in CHD patients. The paradoxical increase of serum FGF-21 in CHD patients may indicate a compensatory response or resistance to FGF-21.
BackgroundIn South China (Gejiu City, Yunnan Province), lung cancer incidence and associated mortality rate is the most prevalent and observed forms of cancer. Lung cancer in this area is called Gejiu squamous cell lung carcinoma (GSQCLC). Research has demonstrated that overexpression of miR-21 occurs in many cancers. However, the unique relationship between miR-21 and its target genes in GSQCLC has never been investigated. The molecular mechanism involved in GSQCLC must be compared to other non-small cell lung cancers in order to establish a relation and identify potential therapeutic targets.Methodology/Principal FindingsIn the current study, we initially found overexpression of miR-21 occurring in non-small cell lung cancer (NSCLC) cell lines when compared to the immortalized lung epithelial cell line BEAS-2B. We also demonstrated that high expression of miR-21 could increase tumor cell proliferation, invasion, viability, and migration in GSQCLC cell line (YTMLC-90) and NSCLC cell line (NCI-H157). Additionally, our results revealed that miR-21 could suppress YTMLC-90 and NCI-H157 cell apoptosis through arresting cell-cycle at G2/M phase. Furthermore, we demonstrated that PTEN, RECK and Bcl-2 are common target genes of miR-21 in NSCLC. Finally, our studies showed that down-regulation of miR-21 could lead to a significant increase in PTEN and RECK and decrease in Bcl-2 at the mRNA and protein level in YTMLC-90 and NCI-H157 cell lines. However, we have not observed any remarkable difference in the levels of miR-21 and its targets in YTMLC-90 cells when compared with NCI-H157 cells.Conclusions/SignificancemiR-21 simultaneously regulates multiple programs that enhance cell proliferation, apoptosis and tumor invasiveness by targeting PTEN, RECK and Bcl-2 in GSQCLC. Our results demonstrated that miR-21 may play a vital role in tumorigenesis and progression of lung squamous cell carcinoma and suppression of miR-21 may be a novel approach for the treatment of lung squamous cell carcinoma.
Background: Since December 2019, an outbreak of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) initially emerged in Wuhan, China, and has spread worldwide now. Clinical features of patients with COVID-19 have been described. However, risk factors leading to in-hospital deterioration and poor prognosis in COVID-19 patients with severe disease have not been well identified. Methods: In this retrospective, single-center cohort study, 1190 adult inpatients (≥ 18 years old) with laboratoryconfirmed COVID-19 and determined outcomes (discharged or died) were included from Wuhan Infectious Disease Hospital from December 29, 2019 to February 28, 2020. The final follow-up date was March 2, 2020. Clinical data including characteristics, laboratory and imaging information as well as treatments were extracted from electronic medical records and compared. A multivariable logistic regression model was used to explore the potential predictors associated with in-hospital deterioration and death. Results: 1190 patients with confirmed COVID-19 were included. Their median age was 57 years (interquartile range 47-67 years). Two hundred and sixty-one patients (22%) developed a severe illness after admission. Multivariable logistic regression demonstrated that higher SOFA score (OR 1.32, 95% CI 1.22-1.43, per score increase, p < 0.001 for deterioration and OR 1.30, 95% CI 1.11-1.53, per score increase, p = 0.001 for death), lymphocytopenia (OR 1.81, 95% CI 1.13-2.89 p = 0.013 for deterioration; OR 4.44, 95% CI 1.26-15.87, p = 0.021 for death) on admission were independent risk factors for in-hospital deterioration from not severe to severe disease and for death in severe patients. On admission D-dimer greater than 1 μg/L (OR 3.28, 95% CI 1.19-9.04, p = 0.021), leukocytopenia (OR 5.10, 95% CI 1.25-20.78), thrombocytopenia (OR 8.37, 95% CI 2.04-34.44) and history of diabetes (OR 11.16, 95% CI 1.87-66.57, p = 0.008) were also associated with higher risks of in-hospital death in severe COVID-19 patients. Shorter time interval from illness onset to non-invasive mechanical ventilation in the survivors with severe disease was observed compared with non-survivors (10.5 days, IQR 9.25-11.0 vs. 16.0 days, IQR 11.0-19.0 days, p = 0.030). Treatment with glucocorticoids increased the risk of progression from not severe to severe disease (OR 3.79, 95% CI 2.39-6.01, p < 0.001). Administration of antiviral drugs especially oseltamivir or ganciclovir is associated with a decreased risk of death in severe patients (OR 0.17, 95% CI 0.05-0.64, p < 0.001).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.