Optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical manufacturing industry as a fast, contactless and non-destructive modality for quantifying thin film coatings on pharmaceutical dosage forms, which cannot be resolved easily with other techniques. In this topical review, we present an overview of the research that has been performed to date, highlighting key differences between systems and outlining major challenges ahead.
Optical coherence tomography (OCT) has recently been demonstrated to measure the film coating thickness of pharmaceutical tablets and pellets directly. The results enable the analysis of inter- and intra-tablet coating variability at an off-line and in-line setting. To date, only a few coating formulations have been tried and there is very little information on the applicability of OCT to other coatings. As it is well documented that optical methods including OCT are prone to scattering leading to limited penetration, some pharmaceutical coatings may not be measurable altogether. This study presents OCT measurements of 22 different common coatings for the assessment of OCT applicability.
Seed germination and uniform plant stand in the field are the most critical crop growth stages determining the final yield. Pea (Pisum sativum L.) seeds production is often hampered due to the seed dormancy caused by the hard seed coat. Such effect is mainly attributed to poor or uneven germination and unsynchronised seedling emergence. Understanding the time course of water intake and several critical germination indicators can reveal many features of seed germination such as rate and uniformity. This paper used optical coherence tomography (OCT), a noninvasive and cross-sectional imaging technique, to monitor the inner structural changes throughout the germination process. A sequence of cross-sectional OCT images of pea (P. sativum L.) seeds, together with additional microscopic optical images, was recorded continuously and in situ for over 40 h. OCT and microscopic images revealed the changes in the internal structure and the external shape of the pea seeds during germination, respectively. It was found that the cross-sectional OCT images helped to identify the critical indicators distinguishing the different phases of germination pea seeds. Therefore, the presented OCT approach offers a fast and nondestructive way to precisely measure the structural indicators in different germination phases.
The line field (LF) design choice for the lateral image formation mechanism (lateral format) has historically been a fraction of the whole optical coherence tomography (OCT) field. However, as the OCT technology develops, the parallelised acquisition of LF-OCT formats (LF-time domain (TD)-OCT, LF-spectral domain (SD)-OCT, LF-swept source (SS)-OCT) offers benefits and capabilities, which may mean it is now becoming more mainstream. Prior reviews on OCT have focused on scanning point (SP) and, to a lesser extent, full field (FF), lateral formats, with, to our knowledge, no prior review specifically on the LF lateral format. Here, we address this gap in the literature by reviewing the history of each LF-OCT format, identifying the applications it has had and providing generic system design overviews. We then provide an analysis and discussion of the benefits and drawbacks of the format.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.