An elevated level of viral diversity was found in some SARS-CoV-2 infected patients, indicating the risk of rapid evolution of the virus. Although no evidence for the transmission of intra-host variants was found, the risk should not be overlooked.
Abstract:Background A novel coronavirus (SARS-CoV-2) has infected more than 75,000 individuals and spread to over 20 countries. It is still unclear how fast the virus evolved and how the virus interacts with other microorganisms in the lung.
MethodsWe have conducted metatranscriptome sequencing for the bronchoalveolar lavage fluid of eight SARS-CoV-2 patients, 25 community-acquired pneumonia (CAP) patients, and 20 healthy controls.
ResultsThe median number of intra-host variants was 1-4 in SARS-CoV-2 infected patients, which ranged between 0 and 51 in different samples. The distribution of variants on genes was similar to those observed in the population data (110 sequences).However, very few intra-host variants were observed in the population as polymorphism, implying either a bottleneck or purifying selection involved in the transmission of the virus, or a consequence of the limited diversity represented in the current polymorphism data. Although current evidence did not support the transmission of intra-host variants in a person-to-person spread, the risk should not be overlooked.The microbiota in SARS-CoV-2 infected patients was similar to those in CAP, either dominated by the pathogens or with elevated levels of oral and upper respiratory commensal bacteria.Conclusion SARS-CoV-2 evolves in vivo after infection, which may affect its virulence, infectivity, and transmissibility. Although how the intra-host variant spreads in the population is still elusive, it is necessary to strengthen the surveillance of the viral Downloaded from https://academic.oup.com/cid/advance-article-abstract/doi/10.1093/cid/ciaa203/5780800 by guest on 16 March 2020 4 evolution in the population and associated clinical changes.
Brown planthopper (BPH) is one of the most destructive insects affecting rice (Oryza sativaL.) production. Phenylalanine ammonia-lyase (PAL) is a key enzyme involved in plant defense against pathogens, but the role of PAL in insect resistance is still poorly understood. Here we show that expression of the majority ofPALsin rice is significantly induced by BPH feeding. Knockdown of OsPALssignificantly reduces BPH resistance, whereas overexpression ofOsPAL8in a susceptible rice cultivar significantly enhances its BPH resistance. We found thatOsPALsmediate resistance to BPH by regulating the biosynthesis and accumulation of salicylic acid and lignin. Furthermore, we show that expression ofOsPAL6andOsPAL8in response to BPH attack is directly up-regulated by OsMYB30, an R2R3 MYB transcription factor. Taken together, our results demonstrate that the phenylpropanoid pathway plays an important role in BPH resistance response, and provide valuable targets for genetic improvement of BPH resistance in rice.
Impact: This study demonstrates the association between the upper respiratory tract microbiota and the prognosis in COVID-19. A higher abundance of Streptococcus on admission predicts a lower mortality rate. The upper respiratory tract microbiota may reflect
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.