The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy. Various water-splitting methods have been investigated previously, but the use of photocatalysts to split water into stoichiometric amounts of H2 and O2 (overall water splitting) without the use of external bias or sacrificial reagents is of particular interest because of its simplicity and potential low cost of operation. However, despite progress in the past decade, semiconductor water-splitting photocatalysts (such as (Ga1-xZnx)(N1-xOx)) do not exhibit good activity beyond 440 nm (refs 1,2,9) and water-splitting devices that can harvest visible light typically have a low solar-to-hydrogen efficiency of around 0.1%. Here we show that cobalt(II) oxide (CoO) nanoparticles can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The photocatalysts were synthesized from non-active CoO micropowders using two distinct methods (femtosecond laser ablation and mechanical ball milling), and the CoO nanoparticles that result can decompose pure water under visible-light irradiation without any co-catalysts or sacrificial reagents. Using electrochemical impedance spectroscopy, we show that the high photocatalytic activity of the nanoparticles arises from a significant shift in the position of the band edge of the material.
BackgroundBronchoalveolar lavage (BAL) galactomannan (GM) assay has been used for diagnosing invasive aspergillosis (IA). We aimed to derive a definitive estimate of the overall accuracy of BAL-GM for diagnosing IA.Methods and ResultsWe undertook a systematic review of thirty diagnostic studies that evaluated the BAL-GM assay for diagnosing IA. PubMed and CBM (China Biological Medicine Database) databasees were searched for relevant studies published in all languages up until Feb 2012. The pooled diagnostic odds ratio (DOR) and summary receiver operating characteristic (SROC) were constructed for each cutoff value. Additionally, pooled sensitivity (SEN), specificity (SPE), and positive and negative likelihood ratios (PLR and NLR, respectively) were calculated for summarizing overall test performance. Thirty studies were included in this meta-analysis. The summary estimates of pooled DOR, SEN, SPE, PLR, and NLR of the BAL-GM assay (cutoff value 0.5) for proven or probable IA were 52.7 (95% confidence interval (CI) 31.8–87.3), 0.87 (95% CI 0.79–0.92), 0.89 (95% CI 0.85–0.92), 8.0 (95% CI 5.7–11.1) and 0.15 (95% CI 0.10–0.23) respectively. The SROC was 0.94 (95% CI 0.92–0.96). Compared with cutoff value of 0.5, it has higher DOR, SPE and PLR, and similar SEN and NLR with cutoff value of 1.0, which indicated the optimal cutoff value might be 1.0. Compared with BAL-GM, serum GM has a lower SEN and higher SPE, while PCR displays a lower SEN and a similar SPE.ConclusionWith the optimal cutoff value of 1.0, the BAL-GM assay has higher SEN compared to PCR and serum GM test. It is a useful adjunct in the diagnosis of proven and probable IA.
Cancer-associated fibroblasts (CAFs) plays an essential role in cancer cell growth, metabolism and immunoreaction. Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. Targeting autophagy has gained interest with multiple preclinical and clinical trials, such as the pharmacological inhibitor chloroquine or the inducer rapamycin, especially in exploiting its ability to modulate the secretory capability of CAFs to enhance drug delivery or inhibit it to prevent its influence on cancer cell chemoresistance. In this review, we summarize the reports on autophagy in cancer-associated fibroblasts by detailing the mechanism and role of autophagy in CAFs, including the hypoxic-autophagy positive feedback cycle, the metabolic cross-talk between CAFs and tumors induced by autophagy, CAFs secreted cytokines promote cancer survival by secretory autophagy, CAFs autophagy-induced EMT, stemness, senescence and treatment sensitivity, as well as the research of antitumor chemicals, miRNAs and lncRNAs. Additionally, we discuss the evidence of molecules in CAFs that are relevant to autophagy and the contribution to sensitive treatments as a potential target for cancer treatment.
Although substantial nutrition transition, characterized by an increased intake of energy, animal fat, and red meats, has occurred during the last several decades in East Asia, few studies have systematically evaluated temporal trends in cancer incidence or mortality among populations in this area. Therefore, we sought to investigate this question with tremendous public health implications. Data on mortality rates of cancers of the breast, colon, prostate, esophagus, and stomach for China (1988-2000), Hong Kong (1960-2006), Japan (1950-2006), Korea (1985-2006), and Singapore (1963-2006) were obtained from WHO. Joinpoint regression was used to investigate trends in mortality of these cancers. A remarkable increase in mortality rates of breast, colon, and prostate cancers and a precipitous decrease in those of esophageal and stomach cancers have been observed in selected countries (except breast cancer in Hong Kong) during the study periods. For example, the annual percentage increase in breast cancer mortality was 5.5% (95% confidence interval: 3.8, 7.3%) for the period 1985-1993 in Korea, and mortality rates for prostate cancer significantly increased by 3.2% (95% confidence interval: 3.0, 3.3%) per year from 1958 to 1993 in Japan. These changes in cancer mortality lagged ∼ 10 years behind the inception of the nutrition transition toward a westernized diet in selected countries or regions. There have been striking changes in mortality rates of breast, colon, prostate, esophageal, and stomach cancers in East Asia during the last several decades, which may be at least in part attributable to the concurrent nutrition transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.