Lateral memristors configured with inert Pt contacts and mixed phase tin oxide layers have exhibited immediate, forming-free, low-power bidirectional resistance switching. Activity dependent conductance and relaxation in the low resistance state resembled short term potentiation in biological synapses. After scanning probe microscopy, x-ray photoelectron spectroscopy and electrical measurements, the device characteristics were attributed to Joule heating induced decomposition of the minority SnO phase and formation of a SnO2 conducting filament with higher effective n-type doping. Finally, the devices recognized input voltage pulse sequences and spectral data by returning unique conductance states, suggesting suitability for bio-inspired pattern recognition systems.
Tandem solar cells promise to overcome the theoretical single junction solar cell efficiency limit. Here we report an elegant approach to monolithically integrate perovskite and Si-heterojunction tandem solar cell by...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.