In order to develop high-performance dielectric materials, poly(arylene ether nitrile)-based composites were fabricated by employing surface-hydroxylated calcium copper titanate (CCTO) particles. The results indicated that the surface hydroxylation of CCTO effectively improved the interfacial compatibility between inorganic fillers and the polymer matrix. The composites exhibit not only high glass transition temperatures and an excellent thermal stability, but also excellent flexibility and good mechanical properties, with a tensile strength over 60 MPa. Furthermore, the composites possess enhanced permittivity, relatively low loss tangent, good permittivity-frequency stability and dielectric-temperature stability under 160 °C. Therefore, it furnishes an effective path to acquire high-temperature-resistant dielectric materials for various engineering applications.
Purpose
To eliminate the angle deviation of magnetic encoder, this paper aims to propose a compensation method based on permanent magnet synchronous motor (PMSM) sensorless control. The paper also describes the experiments performed to verify the validity of this proposed method.
Design/methodology/approach
The proposed method uses PMSM sensorless control method to get high precision virtual angle value, and then get the deviation value between virtual position and magnetic angle which is used as compensation table. Oversampling linear interpolation tabulation method has been proposed to eliminate the noise signals. Finally, a magnetic encoder with precision (repeatability) 0.09° and unidirectional motion precision 0.03 is realized. The control system with an encoder running at 14,000 and 0.01 r/min showing high motion resolution is also realized.
Findings
Higher value of current in PMSM leads to a magnetic encoder with higher precision. When using oversampling linear interpolation to tabulate the compensation table, it is understood that more oversampling does not lead to a better result. Finally, validated by experiments, using eight intervals to calculate the mean value of angle deviation leads to the best result.
Practical implications
The angle deviation compensation method proposed in this paper has a great practical implication and a good commercial application. The method proposed in this paper could be effectively used to self-correct the magnetic encoder using arctangent method and also correct any rotary encoder sensor.
Originality/value
This paper originally proposes an adaptive correction method for a rotary encoder based on PMSM sensorless control. To eliminate the noise signals in an angle compensation table, over-sampling linear interpolation tabulation method has been proposed which also guarantees the precision of the compensation table.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.