Learning depth from spherical panoramas is becoming a popular research topic because a panorama has a full field-of-view of the environment and provides a relatively complete description of a scene. However, applying well-studied CNNs for perspective images to the standard representation of spherical panoramas, i.e., the equirectangular projection, is suboptimal, as it becomes distorted towards the poles. Another representation is the cubemap projection, which is distortionfree but discontinued on edges and limited in the field-ofview. This paper introduces a new framework to fuse features from the two projections, unidirectionally feeding the cubemap features to the equirectangular features only at the decoding stage. Unlike the recent bidirectional fusion approach operating at both the encoding and decoding stages, our fusion scheme is much more efficient. Besides, we also designed a more effective fusion module for our fusion scheme. Experiments verify the effectiveness of our proposed fusion strategy and module, and our model achieves state-of-the-art performance on four popular datasets. Additional experiments show that our model also has the advantages of model complexity and generalization capability.
Structure-from-motion (SfM) largely relies on feature tracking. In image sequences, if disjointed tracks caused by objects moving in and out of the field of view, occasional occlusion, or image noise are not handled well, corresponding SfM could be affected. This problem becomes severer for large-scale scenes, which typically requires to capture multiple sequences to cover the whole scene. In this paper, we propose an efficient non-consecutive feature tracking framework to match interrupted tracks distributed in different subsequences or even in different videos. Our framework consists of steps of solving the feature "dropout" problem when indistinctive structures, noise or large image distortion exists, and of rapidly recognizing and joining common features located in different subsequences. In addition, we contribute an effective segment-based coarse-to-fine SfM algorithm for robustly handling large data sets. Experimental results on challenging video data demonstrate the effectiveness of the proposed system.
Abstract. Structure-from-motion (SfM) is an important computer vision problem and largely relies on the quality of feature tracking. In image sequences, if disjointed tracks caused by objects moving in and out of the view, occasional occlusion, or image noise, are not handled well, the corresponding SfM could be significantly affected. In this paper, we address the non-consecutive feature point tracking problem and propose an effective method to match interrupted tracks. Our framework consists of steps of solving the feature 'dropout' problem when indistinctive structures, noise or even large image distortion exist, and of rapidly recognizing and joining common features located in different subsequences. Experimental results on several challenging and large-scale video sets show that our method notably improves SfM.
We present a novel real-time monocular SLAM system which can robustly work in dynamic environments. Different to the traditional methods, our system allows parts of the scene to be dynamic or the whole scene to gradually change. The key contribution is that we propose a novel online keyframe representation and updating method to adaptively model the dynamic environments, where the appearance or structure changes can be effectively detected and handled. We reliably detect the changed features by projecting them from the keyframes to current frame for appearance and structure comparison. The appearance change due to occlusions also can be reliably detected and handled. The keyframes with large changed areas will be replaced by newly selected frames. In addition, we propose a novel prior-based adaptive RANSAC algorithm (PARSAC) to efficiently remove outliers even when the inlier ratio is rather low, so that the camera pose can be reliably estimated even in very challenging situations. Experimental results demonstrate that the proposed system can robustly work in dynamic environments and outperforms the state-of-the-art SLAM systems (e.g. PTAM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.