Biochar application to soil has been proposed as a potential management strategy to enhance soil carbon (C) sequestration, reduce greenhouse gas emission, improve soil quality, and increase crop productivity. The effects of biochar on soil microbial and enzyme activities are integrally linked to the potential of biochar in achieving these benefits. We conducted a global meta-analysis to assess the effects of biochar on soil microbial biomass C and nitrogen (N) and the activities of 12 enzymes, and identify key factors affecting those soil microbial properties using 964 data points from 72 papers. We found that biochar effects on enzyme activities vary widely with soil type, biochar property and the type of enzyme studied. Biochar significantly increased microbial biomass C (MBC) and urease, alkaline phosphatase and dehydrogenase activities by 21.7%, 23.1%, 25.4% and 19.8%, respectively, with no significant negative effects on any of the enzymes analyzed in this study. Biochar application was more effective in increasing MBC and enzyme activities in soils with low pH (< 6.5), TC (< 20 g kg −1 ), TN (< 2 g kg −1 ), and a fine texture (including clay, clay loam and silt clay). Biochars produced at pyrolysis temperature of 350-550 °C with a high pH (> 10) and low C/N ratio (< 50) increased MBC and urease and dehydrogenase activities. Biochar increased MBC and N-acquisition enzyme activities in the field but not in lab incubation experiments. Urease was increased in short-term studies (within 100 days of biochar application) while alkaline phosphatase was increased in long-term studies that span more than 1 year. The increase in MBC and activities of some soil enzymes in response to biochar application with no negative effects on any hydrolytic and oxidative enzymes illustrate its potential to enhance soil quality particularly in the degraded soils with low nutrient availability and fertility due to limited soil microbial and enzymatic activities. This study also shows that biochars can be designed to achieve specific properties for enhancing microbial and enzymatic activities for specific soils.
Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species‐mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil‐fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.
Aim Agroforestry is a globally practised system of land use for achieving greater and more diverse biomass production, but it has other ecological benefits, such as mitigation of climate change. Despite this, long‐term carbon (C) accumulation in different components of agroforestry systems, the drivers for C accumulation and the linkages between tree biomass and soil C stocks remain unclear. Location Global. Time period From 1989 to 2019. Major taxa studied Trees. Methods Here, we report on a global meta‐analysis based on 141 studies to identify patterns of C accumulation in tree‐based agroforestry systems compared with sole cropland and pasture. Results We found that agroforestry systems had, on average, 46.1 Mg/ha (95% confidence interval, 36.4–55.8 Mg/ha) more C in tree biomass compared with sole cropland‐ or pasture‐based land uses without trees. Furthermore, agroforestry systems with multiple tree species contained greater biomass C stocks and accumulated biomass C faster than systems with a single tree species. The effect of agroforestry practices on soil C stock increased with tree age, although such increases varied among climatic zones. Agroforestry systems in tropical zones had the ability to increase soil C to peak levels quickly, whereas soil C in temperate zones increased at a slower rate but peaked at a greater overall soil C level. Our structural equation model did not detect a direct linkage between biomass C and changes in total soil C stock in agroforestry systems. Main conclusions Our results demonstrate that planting multiple tree species in agroforestry systems is an important strategy to increase biomass C sequestration, with regional climate affecting the temporal change of soil C in response to agroforestry practices.
Individual effects of co‐occurring global change factors on net primary productivity (NPP) have been widely studied; however, their interactive effects remain highly debated. Here, we conducted a global meta‐analysis based on 919 multifactor observations from 120 published studies to examine the interactive effects on NPP of global change factors including elevated [CO2], warming, nitrogen addition, irrigation, drought and changes in species diversity. On average, of the factors studied, six pairs of factors had additive and two pairs had synergistic interactions. Importantly, some of those interaction types changed over time and with treatment intensity. The synergistic interaction between elevated [CO2] and nitrogen addition became additive at high nitrogen addition rates, whereas the synergistic interaction between irrigation and warming diminished at higher temperatures. Over time, the additive effect between elevated [CO2] and increased species richness switched to synergistic. Other global change factor pairs—including elevated [CO2] and warming, nitrogen addition and increased richness, irrigation and N addition, as well as drought and increased richness—remained additive regardless of their treatment intensity or experimental duration. Interaction types of those global change factor pairs did not vary with ecosystem types assessed in our study. Synthesis. Our results suggest that the assumptions of static effects through time or ignoring treatment intensity effects will provide inaccurate predictions of the interactive effects of global change factors on terrestrial NPP. Understanding the context‐dependent nature of interactive effects is crucial for validating Earth system models and predicting future NPP responses to co‐occurring global change drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.