The sequence of transitions between different phases of BiNbO 4 has been thoroughly investigated and clarified using thermal analysis, high-resolution neutron diffraction, and Raman spectroscopy. The theoretical optical phonon modes of the α-phase have been calculated. Based on thermoanalytical data supported by density functional theory (DFT) calculations, the βphase is proposed to be metastable, while the αand γ-phases are stable below and above 1040 °C, respectively. Accurate positional parameters for oxygen positions in the three main polymorphs (α, β, and γ) are presented and the structural relationships between these polymorphs are discussed. Even though no significant changes, only relaxation phenomena, are observed in the dielectric behavior of α-BiNbO 4 below 1000 °C, evidence of two further subtle transitions at ∼350 and 600 °C is presented through careful analysis of structural parameters from variable temperature neutron diffraction measurements. Such phase variations are also evident in the phonon modes in Raman spectra and supported by changes in the thermoanalytical data. These subtle transitions may correspond to the previously proposed antiferroelectric to ferroelectric and ferroelectric to paraelectric phase transitions, respectively.
Aurivillius phase BaBi4Ti4O15 micro-sized powders were produced by solid-state reaction and their photocatalytic properties were reported for the first time. X-ray diffraction revealed the polar orthorhombic structure. BaBi4Ti4O15 ceramics exhibited diffuse phase transition at ~ 410 °C. The freezing temperature of 274 °C was obtained by fitting the Vogel-Fulcher law. The distinct ferroelectric domain switching current peaks in current-electric field (I-E) loop and piezoelectric coefficient d33 value of 7.0 ± 0.1 pC/N at room temperature further demonstrated relaxor ferroelectric behavior of BaBi4Ti4O15. UV-vis absorption spectra indicated that BaBi4Ti4O15 had a direct band gap of 3.2 eV. The photocatalytic study showed 15 % degradation of Rhodamine B (RhB) solution by BaBi4Ti4O15 powders after 3.5 h UV-vis irradiation. The RhB degradation rate was further enhanced by depositing Ag nanoparticles on the BaBi4Ti4O15 powders surface. This work suggested that the relaxor ferroelectric BaBi4Ti4O15 is promising for photocatalytic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.