Background Cold stress is the main abiotic stress in rice, which seriously affects the growth and yield of rice. Identification of cold tolerance genes is of great significance for rice to solve these problems. GATA-family transcription factors involve diverse biological functions, however, their role in cold tolerance in rice remains unclear. Results In this study, a GATA-type zinc finger transcription factor OsGATA16, which can improve cold tolerance, was isolated and characterized from rice. OsGATA16 belongs to OsGATA subfamily-II and contains 11 putative phosphorylation sites, a nuclear localization signal (NLS), and other several conserved domains. OsGATA16 was expressed in all plant tissues, with the strongest in panicles. It was induced by cold and ABA treatments, but was repressed by drought, cytokinin and JA, and acted as a transcriptional suppressor in the nucleus. Overexpression of OsGATA16 improves cold tolerance of rice at seedling stage. Under cold stress treatments, the transcription of four cold-related genes OsWRKY45–1, OsSRFP1, OsCYL4, and OsMYB30 was repressed in OsGATA16-overexpressing (OE) rice compared with wild-type (WT). Interestingly, OsGATA16 bound to the promoter of OsWRKY45–1 and repressed its expression. In addition, haplotype analysis showed that OsGATA16 polarized between the two major rice subspecies japonica and indica, and had a non-synonymous SNP8 (336G) associated with cold tolerance. Conclusion OsGATA16 is a GATA transcription factor, which improves cold tolerance at seedling stage in rice. It acts as a positive regulator of cold tolerance by repressing some cold-related genes such as OsWRKY45–1, OsSRFP1, OsCYL4 and OsMYB30. Additionally, OsGATA16 has a non-synonymous SNP8 (336G) associated with cold tolerance on CDS region. This study provides a theoretical basis for elucidating the mechanism of cold tolerance in rice and new germplasm resources for rice breeding.
The APETALA 2/ethylene response factors (AP2/ERF) are widespread in the plant kingdom and play essential roles in regulating plant growth and development as well as defense responses. In this study, a novel rice AP2/ERF transcription factor gene, OsRPH1, was isolated and functionally characterized. OsRPH1 falls into group-IVa of the AP2/ERF family. OsRPH1 protein was found to be localized in the nucleus and possessed transcriptional activity. Overexpression of OsRPH1 resulted in a decrease in plant height and length of internode and leaf sheath as well as other abnormal characters in rice. The length of the second leaf sheath of OsRPH1-overexpressing (OE) plants recovered to that of Kitaake (non-transgenic recipient) in response to exogenous gibberellin A 3 (GA 3) application. The expression of GA biosynthesis genes (OsGA20ox1-OsGA20ox4, OsGA3ox1, and OsGA3ox2) was significantly downregulated, whereas that of GA inactivation genes (OsGA2ox7, OsGA2ox9, and OsGA2ox10) was significantly upregulated in OsRPH1-OE plants. Endogenous bioactive GA contents significantly decreased in OsRPH1-OE plants. OsRPH1 interacted with a blue light receptor, OsCRY1b, in a blue light-dependent manner. Taken together, our results demonstrate that OsRPH1 negatively regulates plant height and bioactive GA content by controlling the expression of GA metabolism genes in rice. OsRPH1 is involved in blue light inhibition of leaf sheath elongation by interacting with OsCRY1b.
WRKY transcription factors (TFs) have been reported to respond to biotic and abiotic stresses and regulate plant growth and development. However, the molecular mechanisms of WRKY TFs involved in drought stress and regulating plant height in rice remain largely unknown. In this study, we found that transgenic rice lines overexpressing OsWRKY55 (OsWRKY55-OE) exhibited reduced drought resistance. The OsWRKY55-OE lines showed faster water loss and greater accumulation of hydrogen peroxide (H2O2) and superoxide radical (O2−·) compared to wild-type (WT) plants under drought conditions. OsWRKY55 was expressed in various tissues and was induced by drought and abscisic acid (ABA) treatments. Through yeast two-hybrid assays, we found that OsWRKY55 interacted with four mitogen-activated protein kinases (MAPKs) that could be induced by drought, including OsMPK7, OsMPK9, OsMPK20-1, and OsMPK20-4. The activation effects of the four OsMPKs on OsWRKY55 transcriptional activity were demonstrated by a GAL4-dependent chimeric transactivation assay in rice protoplasts. Furthermore, OsWRKY55 was able to reduce plant height under normal conditions by decreasing the cell size. In addition, based on a dual luciferase reporter assay, OsWRKY55 was shown to bind to the promoter of OsAP2-39 through a yeast one-hybrid assay and positively regulate OsAP2-39 expression. These results suggest that OsWRKY55 plays a critical role in responses to drought stress and the regulation of plant height in rice, further providing valuable information for crop improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.