Background-The role of osteoprotegerin in vascular disease is unclear. Recent observational studies show that serum osteoprotegerin levels are associated with the severity and progression of coronary artery disease, atherosclerosis, and vascular calcification in patients. However, genetic and treatment studies in mice suggest that osteoprotegerin may protect against vascular calcification. Methods and Results-To test whether osteoprotegerin induces or prevents vascular disease, we treated atherogenic diet-fed ldlr (Ϫ/Ϫ) mice with recombinant osteoprotegerin (Fc-OPG) or vehicle for 5 months. Vehicle-treated mice developed significant, progressive atherosclerosis with increased plasma osteoprotegerin levels, consistent with observational studies, and Ϸ15% of these atherosclerotic lesions developed calcified cartilage-like metaplasia. Treatment with Fc-OPG significantly reduced the calcified lesion area without affecting atherosclerotic lesion size or number, vascular cytokines, or plasma cholesterol levels. Treatment also significantly reduced tissue levels of aortic osteocalcin, a marker of mineralization. Conclusions-These data support a role for osteoprotegerin in the vasculature as an inhibitor of calcification and a marker, rather than a mediator, of atherosclerosis. (Circulation. 2008;117:411-420.)
Based on the antigen retrieval principle, our previous study has demonstrated that heating archival formalin-fixed, paraffin-embedded (FFPE) tissues at a higher temperature and at higher pH value of the retrieval solution may achieve higher efficiency of extracted DNA, when compared to the traditional enzyme digestion method. Along this line of heat-induced retrieval, this further study is focused on development of a simpler and more effective heat-induced DNA retrieval technique by testing various retrieval solutions. Three major experiments using a high temperature heating method to extract DNA from FFPE human lymphoid and other tissue sections were performed to compare: (1) different concentrations of alkaline solution (NaOH or KOH, pH 11.5-12) versus Britton and Robinson type of buffer solution (BR buffer) of pH 12 that was the only retrieval solution tested in our previous study; (2) several chemical solutions (SDS, Tween 20, and GITC of various concentrations) versus BR buffer or alkaline solution; and (3) alkaline solution mixed with chemicals versus BR buffer or single alkaline solution. Efficiency of DNA extraction was evaluated by measuring yields using spectrophotometry, electrophoretic pattern, semiquantitation of tissue dissolution, PCR amplification, and kinetic thermocycling-PCR methods. Results showed that boiling tissue sections in 0.1 M NaOH or KOH or its complex retrieval solutions produced higher yields and better quality of DNA compared to BR buffer or chemical solutions alone. The conclusion was that boiling FFPE tissue sections in 0.1 M alkaline solution is a simpler and more effective heat-induced retrieval protocol for DNA extraction. Combination with some chemicals (detergents) may further significantly improve efficiency of the heat-induced retrieval technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.