HIV patients are vulnerable to developing active visceral leishmaniasis (VL). To understand this complication, we studied a mathematical model for HIV and visceral leishmaniasis coinfection. In this approach, we reckoned two distinct equilibria: the disease-free and the endemic equilibria. The local and global stability of the disease-free equilibrium were thoroughly investigated. To further support the qualitative findings, we performed simulations to quantify the changes of the dynamical behavior of the full model for variation of relevant parameters. Increasing the rate of VL recovery ($\phi _{1}$
ϕ
1
), the recovery rate for VL–HIV Co-infection ($\phi _{2}$
ϕ
2
), removing reservoirs ($c_{1}$
c
1
), minimizing the contact rate ($\beta _{h}$
β
h
) are important in controlling the transmission of individual and co-infection disease of VL and HIV. In conclusion, possible measures should be implemented to reduce the number of infected individuals. Therefore, we recommend that policy makers and stakeholders incorporate these measures during planing and implementation phases to control the transmission of VL–HIV co-infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.