Crapemyrtle bark scale, Acanthococcus (=Eriococcus) lagerstroemiae (Kuwana) (Hemiptera: Eriococcidae), is a newly introduced insect pest on crapemyrtles, Lagerstroemia spp. (Myrtales: Lythraceae), one of the most popular flowering shrubs in the U.S. Since first detected in Texas in 2004, this pest has spread to twelve states causing losses to stakeholders. To develop a management plan, we reviewed current knowledge about the pest’s biology and ecology, and suggested research approaches including studying its thermal tolerance, host range, plant resistance and biological control. Parasitoids and predators have been reared from A. lagerstroemiae in the U.S. and China. However, new surveys of natural enemies should be conducted in China, and studies on the host range and impacts of natural enemies on A. lagerstroemiae may help determine the potential for classical biological control. The life history, preying efficiency and rearing methods are important for coccinellid predators found in the U.S. including Chilocorus cacti L. and Hyperaspis spp. To enhance natural enemy performance, it is important to evaluate a sustainable insecticide program that considers efficacy, timing, rate and impact on pollinator health. Finally, an integrated management program of A. lagerstroemiae is discussed including planting resistant cultivars, using host specific natural enemies, and prudent use of insecticides.
Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in CHC composition. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. There is also a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance in these species. Given that CHCs are almost ubiquitous in insects, we suggest that evolutionary changes in insect CHC components can be a general mechanism for the evolution of desiccation resistance and adaptation to diverse and changing environments.
The tawny crazy ant, Nylanderia fulva (Mayr) (Hymenoptera: Formicidae), has invaded states of the U.S. including Texas, Louisiana, Mississippi, Alabama, Florida, and Georgia. Native to South America, N. fulva is considered a pest in the U.S. capable of annoying homeowners and farmers, as well as displacing native ant species. As it continues to expand its range, there is a growing need to develop novel management techniques to control the pest and prevent further spread. Current management efforts rely heavily on chemical control, but these methods have not been successful. A review of the biology, taxonomy, ecology, and distribution of N. fulva, including discussion of ecological and economic consequences of this invasive species, is presented. Options for future management are suggested focusing on biological control, including parasitoid flies in the genus Pseudacteon, the microsporidian parasite Myrmecomorba nylanderiae, and a novel polynucleotide virus as potential biological control agents. We suggest further investigation of natural enemies present in the adventive range, as well as foreign exploration undertaken in the native range including Paraguay, Brazil, and Argentina. We conclude that N. fulva may be a suitable candidate for biological control.
The crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana) (Hemiptera: Eriococcidae), is an invasive pest of crapemyrtles, Lagerstroemia spp. L. (Lythraceae) in the southeastern USA. Information about its temperature-dependent development and host range is limited. The objectives of this study were to evaluate the effects of temperature on the immature development of A. lagerstroemiae, and to determine plant species suitable for immature development and reproduction. Developmental time and survival of eggs were evaluated at 7 constant temperatures from 17.5 to 32 °C, and of nymphs at 20, 25, and 30 °C. Results suggested that 27.5 °C was the optimum temperature for egg hatching with the shortest time (10 d) and the highest hatching rate (95%). The developmental time for A. lagerstroemiae from nymph to prepupa and gravid female was 56 d and 68 d at 30 °C, respectively. Five plant species besides crapemyrtle (Lagerstroemia indica × fauriei L.) were able to support the immature development and reproduction of A. lagerstroemiae under no-choice conditions, including Lawsonia inermis L., Heimia salicifolia Link, Punica granatum L., Lythrum alatum Pursh (all Lythraceae), and Callicarpa americana L. (Lamiaceae). At wk 12 from inoculation, the density of gravid females was 482 ± 92 (mean ± standard error) on L. indica × fauriei, 200 ± 70 on C. americana, and < 150 on other species. Using data from developmental time and host range, integrated pest management (IPM) practitioners can implement preventive strategies for A. lagerstroemiae.
Physiological limits of non-native species to environmental factors are critical for their establishment and spread in the adventive range. The crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), is a major pest of crapemyrtles. Despite concerns on its rapid spread, there is a lack of information on potential distribution range of this scale in the United States. To understand this scale’s distribution potential, its thermal tolerance was evaluated using higher and lower thermal limits. Exposure time leading to 50 and 90% mortality (Lt50 and Lt90) at extreme low or high temperatures were measured under controlled conditions. A model was then built to fit temperature data of cold fronts from 2001 to 2016 and to calculate potential mortalities along latitudes. Isothermal lines delineated at 90% mortality were defined as the northern limits. Modeling results suggested that A. lagerstroemiae nymphs collected in summer could tolerate heat; however, they were more susceptible to cold temperatures. Laboratory assays suggested that cold tolerance of A. lagerstroemiae nymphs varied from summer to winter. For example, SCP of nymphs collected in summer was higher than those collected in fall (−21 vs. −27°C), and the exposure time leading to Lt90 at 0°C was also different, which were 8 versus 50 h comparing nymphs collected in summer versus fall. Our prediction suggested that A. lagerstroemiae is likely to be limited by cold temperatures along the 43° N latitude. Based on these results, integrated management strategies can be developed for A. lagerstroemiae within the predicted range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.