We present a counterexample to the Nelson-Seiberg theorem and its extensions. The model has 4 chiral fields, including one R-charge 2 field and no R-charge 0 filed. Giving generic values of coefficients in the renormalizable superpotential, there is a supersymmetric vacuum with one complex dimensional degeneracy. The superpotential equals zero and the R-symmetry is broken everywhere on the degenerated vacuum. The existence of such a vacuum disagrees with both the original Nelson-Seiberg theorem and its extensions, and can be viewed as the consequence of a non-generic R-charge assignment. Such counterexamples may introduce error to the field counting method for surveying the string landscape, and are worth further investigations.
Several counterexample models to the Nelson-Seiberg theorem have been discovered in previous literature, with generic superpotentials respecting the R-symmetry and non-generic R-charge assignments for chiral fields. This work present a sufficient condition for such counterexample models: the number of R-charge 2 fields, which is greater than the number of R-charge 0 fields, must be less than or equal to the number of R-charge 0 fields plus the number of independent field pairs with opposite R-charges and satisfying some extra requirements. We give a correct count of such field pairs when there are multiple field pairs with degenerated R-charges. These models give supersymmetric vacua with spontaneous R-symmetry breaking, thus are counterexamples to both the Nelson-Seiberg theorem and its extensions.
Flexible DC transmission systems experience negative damping characteristics in the high-frequency range due to the delay in the system control link. This can lead to interactions between the impedance of modular multilevel converters (MMCs) and AC transmission lines, resulting in high-frequency oscillation (HFO) issues. To resolve this problem, a simplified MMC control model was developed, taking into account the current inner loop control link. The Sobol method was employed to analyze the factors influencing the impedance characteristics of MMC. Additionally, a combined approach involving a virtual passive filtering method and an equivalent current sampling method was proposed to provide additional damping. The study compared and analyzed the impact of additional damping control on the impedance characteristics and system stability of MMCs. Lastly, a flexible direct current grid connection simulation model was constructed using PSCAD to validate the effectiveness of the proposed additional damping control strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.