Background: Paclitaxel (PTX) has interesting anticancer activity. However, it is insoluble in water, which seriously hinders its use in clinical. Superparamagnetic iron oxide nanoparticles (SPIONs) are used as an ideal drug delivery system. Therefore, we proposed a folic acid (FA) targeting drug-loaded SPIONs to reduce its adverse reaction. Methods: To improve the hydrophilicity of PTX, the structure of PTX was modified by succinic anhydride to obtain 2ʹ-succinate paclitaxel (SPTX). FA conjugated Polyethylene glycol (PEG)/ polyethyleneimine (PEI)-SPIONs SPTX-loaded nanoparticles (SPTX@FA@PEG/PEI-SPIONs) were prepared by solvent volatilization and hydrogen bond adsorption, and the nano-formulation was optimized by response surface methodology (RSM). The characteristics, antitumor effect in vitro, pharmacokinetics, and biodistribution of SPTX@FA@PEG/PEI-SPIONs were evaluated. Results: SPTX was successfully loaded on the surface of FA@PEG/PEI-SPIONs. The formation of SPTX@FA@PEG/PEI-SPIONs was exhibited water-dispersive monodispersity with high stability by RSM, and dynamic light scattering (DLS) was 178.1±3.12 nm, particle size observed in the transmission electron microscope (TEM) was 13.01±1.10 nm, and the encapsulation efficiency (EE) and loading efficiency (LE) were 81.1±1.66% and 14.8±1.46%, respectively. It enhanced the stability in normal physiological condition, accelerated drug release at tumorous pH, and preferentially prolonged the circulation time. In vitro, the SPTX@FA@PEG/PEI-SPIONs significantly targeted to folate receptor (FR) positive cancers cell (HNE-1) via the receptor-ligand mediated pathway, resulting in effective cytotoxic activity. Pharmacokinetic results demonstrated that SPTX@FA@PEG/PEI-SPIONs (t 1/2 =3.41 h) had longer than free SPTX or PTX (t 1/2 =1.67 h) in rats in vivo. Tissue distribution studies showed that SPTX@FA@PEG/PEI-SPIONs were present at high levels in the liver and help in targeting the folate receptors present on the kidneys. Conclusion: These results suggest that SPTX@FA@PEG/PEI-SPIONs offer a highly promising approach to control drug release, improve drug pharmacokinetics and actively target the nasopharyngeal carcinoma.
In Wireless Sensor Networks (WSNs) a multitude of location-dependent applications have been proposed recently, which is very intriguing for researchers to discover and design more accurate and cost-effective localization algorithms. In anisotropic networks, the Euclidean distance between a pair of nodes may not correlate closely with the hop count between them because the corresponding shortest path may have to curve around intermediate holes, resulting in poor distance estimation. And without the help of a large number of uniformly deployed seed nodes, those schemes fail in anisotropic WSNs. To address this issue and improve the accuracy of localization, we propose the Removing Heavily Curved Path (RHCP) scheme in this paper. RHCP takes advantage of selecting the paths which are not heavily affected by the holes to recalculate the location of each unknown node. Through simulation, the results reveal that RHCP performs better than original DV-Hop in anisotropic networks with different shape of holes. In addition, through iterations of RHCP, the results get improved for different anchor node densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.