We present, GEM, the first heterogeneous graph neural network approach for detecting malicious accounts at Alipay, one of the world's leading mobile cashless payment platform. Our approach, inspired from a connected subgraph approach, adaptively learns discriminative embeddings from heterogeneous account-device graphs based on two fundamental weaknesses of attackers, i.e. device aggregation and activity aggregation. For the heterogeneous graph consists of various types of nodes, we propose an attention mechanism to learn the importance of different types of nodes, while using the sum operator for modeling the aggregation patterns of nodes in each type. Experiments show that our approaches consistently perform promising results compared with competitive methods over time.
Apremilast was effective in treating oral ulcers, which are the cardinal manifestation of Behçet's syndrome. This preliminary study was neither large enough nor long enough to assess long-term efficacy, the effect on other manifestations of Behçet's syndrome, or the risk of uncommon serious adverse events. (Funded by Celgene; ClinicalTrials.gov number, NCT00866359.).
We present, GeniePath, a scalable approach for learning adaptive receptive fields of neural networks defined on permutation invariant graph data. In GeniePath, we propose an adaptive path layer consists of two complementary functions designed for breadth and depth exploration respectively, where the former learns the importance of different sized neighborhoods, while the latter extracts and filters signals aggregated from neighbors of different hops away. Our method works in both transductive and inductive settings, and extensive experiments compared with competitive methods show that our approaches yield state-of-the-art results on large graphs.
Differentially private collaborative filtering is a challenging task, both in terms of accuracy and speed. We present a simple algorithm that is provably differentially private, while offering good performance, using a novel connection of differential privacy to Bayesian posterior sampling via Stochastic Gradient Langevin Dynamics. Due to its simplicity the algorithm lends itself to efficient implementation. By careful systems design and by exploiting the power law behavior of the data to maximize CPU cache bandwidth we are able to generate 1024 dimensional models at a rate of 8.5 million recommendations per second on a single PC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.