We study the problem of floor identification for radiofrequency (RF) signal samples obtained in a crowdsourced manner, where the signal samples are highly heterogeneous and most samples lack their floor labels. We propose GRAFICS, a graph embedding-based floor identification system. GRAFICS first builds a highly versatile bipartite graph model, having APs on one side and signal samples on the other. GRAFICS then learns the low-dimensional embeddings of signal samples via a novel graph embedding algorithm named E-LINE. GRAFICS finally clusters the node embeddings along with the embeddings of a few labeled samples through a proximity-based hierarchical clustering, which eases the floor identification of every new sample. We validate the effectiveness of GRAFICS based on two large-scale datasets that contain RF signal records from 204 buildings in Hangzhou, China, and five buildings in Hong Kong. Our experiment results show that GRAFICS achieves highly accurate prediction performance with only a few labeled samples (96% in both micro-and macro-F scores) and significantly outperforms several state-of-the-art algorithms (by about 45% improvement in micro-F score and 53% in macro-F score).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.