Motivation Molecular property prediction is a hot topic in recent years. Existing graph-based models ignore the hierarchical structures of molecules. According to the knowledge of chemistry and pharmacy, the functional groups of molecules are closely related to its physio-chemical properties and binding affinities. So, it should be helpful to represent molecular graphs by fragments that contain functional groups for molecular property prediction. Results In this paper, to boost the performance of molecule property prediction, we first propose a definition of molecule graph fragments that may be or contain functional groups, which are relevant to molecular properties, then develop a fragment-oriented multi-scale graph attention network for molecular property prediction, which is called FraGAT. Experiments on several widely-used benchmarks are conducted to evaluate FraGAT. Experimental results show that FraGAT achieves state-of-the-art predictive performance in most cases. Furthermore, our case studies showthat when the fragments used to represent the molecule graphs contain functional groups, the model can make better predictions. This conforms to our expectation and demonstrates the interpretability of the proposed model. Availability and implementation The code and data underlying this work are available in GitHub, at https://github.com/ZiqiaoZhang/FraGAT. Supplementary information Supplementary data are available at Bioinformatics online.
Motivation Accurately predicting drug-target interaction (DTI) is a crucial step to drug discovery. Recently, deep learning techniques have been widely used for DTI prediction and achieved significant performance improvement. One challenge in building deep learning models for DTI prediction is how to appropriately represent drugs and targets. Target distance map and molecular graph are low dimensional and informative representations, which however have not been jointly used in DTI prediction. Another challenge is how to effectively model the mutual impact between drugs and targets. Though attention mechanism has been employed to capture the one-way impact of targets on drugs or vice versa, the mutual impact between drugs and targets has not yet been explored, which is very important in predicting their interactions. Results Therefore, in this paper we propose MINN-DTI, a new model for DTI prediction. MINN-DTI combines an interacting-transformer module (called Interformer) with an improved Communicative Message Passing Neural Network (CMPNN) (called Inter-CMPNN) to better capture the two-way impact between drugs and targets, which are represented by molecular graph and distance map respectively. The proposed method obtains better performance than the state-of-the-art methods on three benchmark datasets: DUD-E, human and BindingDB. MINN-DTI also provides good interpretability by assigning larger weights to the amino acids and atoms that contribute more to the interactions between drugs and targets. Availability The data and code of this study are available at https://github.com/admislf/MINN-DTI.
Online Social Networks generate a prodigious wealth of real-time information at an incessant rate. In this paper we study the empirical data that crawled from Twitter to describe the topology and information spreading dynamics of Online Social Networks. We propose a measurement with three measures to state the efforts of users on Twitter to get their information spreading, based on the unique mechanisms for information retransmission on Twitter. It is noticed that small fraction of users with special performance on participation can gain great influence, while most other users play a role as middleware during the information propagation. Thus a community analysis is performed and four categories of users are found with different kinds of participation that cause the information dissemination dynamics. These suggest that exiting topological measures alone may reflect little about the influence of individuals and provide new insights for information spreading.
While significant advances have been made in predicting static protein structures, the inherent dynamics of proteins, modulated by ligands, are crucial for understanding protein function and facilitating drug discovery. Traditional docking methods, frequently used in studying protein-ligand interactions, typically treat proteins as rigid. While molecular dynamics simulations can propose appropriate protein conformations, they’re computationally demanding due to rare transitions between biologically relevant equilibrium states. In this study, we present DynamicBind, a novel method that employs equivariant geometric diffusion networks to construct a smooth energy landscape, promoting efficient transitions between different equilibrium states. DynamicBind accurately recovers ligand-specific conformations from unbound protein structures without the need for holo-structures or extensive sampling. Remarkably, it demonstrates state-of-the-art performance in docking and virtual screening benchmarks. Our experiments reveal that DynamicBind can accommodate a wide range of large protein conformational changes and identify novel cryptic pockets in unseen protein targets. As a result, DynamicBind shows potential in accelerating the development of small molecules for previously undruggable targets and expanding the horizons of computational drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.