Chitin is one of the most abundant biopolymers on Earth but under-utilized. The effective conversion of chitin biomass to useful chemicals is a promising strategy to make full use of chitin. Among chitin-derived compounds, some furan derivatives, typically 5-hydroxymethylfurfural and 3-acetamido-5-acetylfuran, have shown great potential as platform compounds in future industries. In this review, different catalytic systems for the synthesis of nitrogen-free 5-hydroxymethylfurfural and nitrogen-containing 3-acetamido-5-acetylfuran from chitin or its derivatives are summarized comparatively. Some efficient technologies for enhancing chitin biomass conversion have been introduced. Last but not least, future challenges are discussed to enable the production of valuable compounds from chitin biomass via greener processes.
γ‐Valerolactone (GVL) is considered as a star biochemical which can be used as a green solvent, fuel additive and versatile organic intermediate. In this study, metal triflate (M(OTf)n) was utilized as the catalyst for one‐pot transformation of furfural (FF) to GVL in alcohol media under microwave irradiation. Alcohol plays multiple functions including solvent, hydrogen donor and alcoholysis reagent in this cascade reaction process. And process efficiency of GVL production from FF upgrading is strongly related to the effective charge density of selected catalyst and the reduction potential of selected alcohol. Complex (OTf)n‐M‐O(H)R, presenting both Brønsted acid and Lewis acid, is the real catalytic active species in this cascade reaction process. Among various catalysts, Sc(OTf)3 exhibited the best catalytic activity for GVL production. Various reaction parameters including the Sc(OTf)3 amount, reaction temperature and time were optimized by the response surface methodology with the central composite design (RSM‐CCD). Up to 81.2% GVL yield and 100% FF conversion were achieved at 143.9 oC after 8.1 h in the presence of 0.16 mmol catalyst. This catalyst exhibits high reusability and can be regenerated by oxidative degradation of humins. In addition, a plausible cascade reaction network was proposed based on the distribution of product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.