BackgroundCurrently, the role of human papillomavirus (HPV)-58 in southwestern China has been unexplored. Although there is some controversy, it is proposed that the viral load of HPV correlates with the severity of intraepithelial lesions.MethodsWe identified 7747 patients from south Sichuan and adjacent regions who were diagnosed with HPV between 2013 and 2017. The HR-HPV subtype distribution was analyzed and the patient’s viral loads were quantified using real-time RT-PCR.ResultsAmong all 7747 patients screened for HPV genotypes, 1728 patients (22.31%) were identified as having HR-HPV subtypes. In patients without intraepithelial lesions (12.41%), HPV-52, HPV-16, and HPV-58 were the three most prevalent HR-HPV subtypes. Moreover, HPV-16, HPV-58, and HPV-33 were the most prevalent subtypes in patients with cervical intraepithelial neoplasia grade II (CINII) (42.86%) and grade III (CINIII) (59.81%), and accounted for the majority of invasive cervical cancer (ICC) (69.34%). Thus, viral loads of HPV-58, HPV-16, and HPV-33 positively correlated with the severity of cervical lesions (P < 0.001, P = 0.016, P = 0.026, respectively). Using receiver operating characteristic (ROC) curve analysis, the optimum thresholds for predicting severe intraepithelial lesions of cases (CINI, CINIII and ICC) with HPV-16, HPV-58, and HPV-33, respectively, were obtained, which were 1, 0.93, and 0.25, respectively.ConclusionIn our study, we showed that HPV-16 was the most common carcinogenic HPV subtype in southwestern China followed by HPV-58 and HPV-33. Viral loads of these subtypes are associated with the severity of premalignant lesions in the cervix.Electronic supplementary materialThe online version of this article (10.1186/s12985-018-1003-x) contains supplementary material, which is available to authorized users.
XRCC2 is an essential part of the homologous recombination repair pathway. However, relatively little is known about the effect of XRCC2 gene C41657T and G4234C polymorphisms on the individual susceptibility to colorectal cancer (CRC). The purpose of this study was to investigate the association between XRCC2 gene C41657T and G4234C polymorphisms and CRC and to explore the relationship among the polymorphisms and clinicopathologic parameters and protein expression levels of XRCC2. A hospital-based case-control study was conducted with 246 CRC cases and 262 healthy controls. The genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism. XRCC2 protein was analyzed by immunohistochemistry for the paraffin sections of 120 CRC cases. The study data showed that the C41657T genotypes were associated with the risk of CRC. The CT/TT genotypes and T allele were overrepresented among the CRC cases. Compared with CC, CT/TT enhanced the risk of CRC (odds ratio = 1.646, 95 % confidence interval = 1.127-2.404, P = 0.010). XRCC2 protein expression of CRC patients with CT/TT genotypes was significantly higher than that of the patients with CC genotype (χ (2) = 4.887, P = 0.027). XRCC2 gene G4234C polymorphisms have no relevance to the risk of CRC. Our findings suggest that XRCC2 C41657T polymorphism may adjust the XRCC2 expression and might influence susceptibility of CRC.
Immunotherapies such as checkpoint blockade therapies are known to enhance anti-melanoma CD8+ T cell immunity, but only a fraction of patients treated with these therapies achieve durable immune response and disease control. It may be that CD8+ T cells need help from other immune cells to generate effective and long-lasting anti-tumor immunity or that CD8+ T cells alone are insufficient for complete tumor regression and cure. Melanoma contains significant numbers of B cells; however, the role of B cells in anti-melanoma immunity is controversial. In this study, B16 melanoma mouse models were used to determine the role of B cells in anti-melanoma immunity. C57BL/6 mice, B cell knockout (KO) C57BL/6 mice, anti-CD19, and anti-CXCL13 antibody-treated C57BL/6 mice were used to determine treatment efficacy and generation of tumor-specific CD8+ T cells in response to PD-L1 blockade alone or combination with TLR-7/8 activation. Whole transcriptome analysis was performed on the tumors from B cell depleted and WT mice, untreated or treated with anti-PD-L1. Both CD40-positive and CD40-negative B cells were isolated from tumors of TLR-7/8 agonist-treated wild-type mice and adoptively transferred into tumor-bearing B cell KO mice, which were treated with anti-PD-L1 and TLR-7/8 agonist. Therapeutic efficacy was determined in the presence of activated or inactivated B cells. Microarray analysis was performed on TLR-7/8-treated tumors to look for the B cell signatures. We found B cells were required to enhance the therapeutic efficacy of monotherapy with anti-PD-L1 antibody and combination therapy with anti-PD-L1 antibody plus TLR-7/8 agonist. However, B cells were not essential for anti-CTLA-4 antibody activity. Interestingly, CD40-positive but not CD40-negative B cells contributed to anti-melanoma immunity. In addition, melanoma patients’ TCGA data showed that the presence of B cell chemokine CXCL13 and B cells together with CD8+ T cells in tumors were strongly associated with improved overall survival. Our transcriptome data suggest that the absence of B cells enhances immune checkpoints expression in the tumors microenvironment. These results revealed the importance of B cells in the generation of effective anti-melanoma immunity in response to PD-1-PD-L1 blockade immunotherapy. Our findings may facilitate the design of more effective anti-melanoma immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.