Gene expression is controlled by the complex interaction of transcription factors binding to promoters and other regulatory DNA elements. One common characteristic of the genomic regions associated with regulatory proteins is a pronounced sensitivity to DNase I digestion. We generated genome-wide high-resolution maps of DNase I hypersensitive (DH) sites from both seedling and callus tissues of rice (Oryza sativa). Approximately 25% of the DH sites from both tissues were found in putative promoters, indicating that the vast majority of the gene regulatory elements in rice are not located in promoter regions. We found 58% more DH sites in the callus than in the seedling. For DH sites detected in both the seedling and callus, 31% displayed significantly different levels of DNase I sensitivity within the two tissues. Genes that are differentially expressed in the seedling and callus were frequently associated with DH sites in both tissues. The DNA sequences contained within the DH sites were hypomethylated, consistent with what is known about active gene regulatory elements. Interestingly, tissue-specific DH sites located in the promoters showed a higher level of DNA methylation than the average DNA methylation level of all the DH sites located in the promoters. A distinct elevation of H3K27me3 was associated with intergenic DH sites. These results suggest that epigenetic modifications play a role in the dynamic changes of the numbers and DNase I sensitivity of DH sites during development.
Clonally reproducing plants have the potential to bear a significantly greater mutational load than sexually reproducing species. To investigate this possibility, we examined the breadth of genome-wide structural variation in a panel of monoploid/ doubled monoploid clones generated from native populations of diploid potato (Solanum tuberosum), a highly heterozygous asexually propagated plant. As rare instances of purely homozygous clones, they provided an ideal set for determining the degree of structural variation tolerated by this species and deriving its minimal gene complement. Extensive copy number variation (CNV) was uncovered, impacting 219.8 Mb (30.2%) of the potato genome with nearly 30% of genes subject to at least partial duplication or deletion, revealing the highly heterogeneous nature of the potato genome. Dispensable genes (>7000) were associated with limited transcription and/or a recent evolutionary history, with lower deletion frequency observed in genes conserved across angiosperms. Association of CNV with plant adaptation was highlighted by enrichment in gene clusters encoding functions for environmental stress response, with gene duplication playing a part in species-specific expansions of stress-related gene families. This study revealed unique impacts of CNV in a species with asexual reproductive habits and how CNV may drive adaption through evolution of key stress pathways.
Background Cold stress can greatly affect plant growth and development. Plants have developed special systems to respond to and tolerate cold stress. While plant scientists have discovered numerous genes involved in responses to cold stress, few studies have been dedicated to investigation of genome-wide chromatin dynamics induced by cold or other abiotic stresses. Results Genomic regions containing active cis -regulatory DNA elements can be identified as DNase I hypersensitive sites (DHSs). We develop high-resolution DHS maps in potato ( Solanum tuberosum ) using chromatin isolated from tubers stored under room (22 °C) and cold (4 °C) conditions. We find that cold stress induces a large number of DHSs enriched in genic regions which are frequently associated with differential gene expression in response to temperature variation. Surprisingly, active genes show enhanced chromatin accessibility upon cold stress. A large number of active genes in cold-stored tubers are associated with the bivalent H3K4me3-H3K27me3 mark in gene body regions. Interestingly, upregulated genes associated with the bivalent mark are involved in stress response, whereas downregulated genes with the bivalent mark are involved in developmental processes. In addition, we observe that the bivalent mark-associated genes are more accessible than others upon cold stress. Conclusions Collectively, our results suggest that cold stress induces enhanced chromatin accessibility and bivalent histone modifications of active genes. We hypothesize that in cold-stored tubers, the bivalent H3K4me3-H3K27me3 mark represents a distinct chromatin environment with greater accessibility, which may facilitate the access of regulatory proteins required for gene upregulation or downregulation in response to cold stress. Electronic supplementary material The online version of this article (10.1186/s13059-019-1731-2) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.