Bonding between rebar and steel fiber reinforced concrete (SFRC) has a major effect on reinforced SFRC members exposed to chloride environments where both steel fiber and reinforcement are subjected to corrosion damage. This paper presents an experimental study of the effect of corrosion on the bond behavior of reinforcement and SFRC. The test parameters include corrosion ratio, fiber fraction, and cover thickness‐rebar diameter ratio (c/d). Failure patterns, bond‐slip curves, and bond strength were compared. Increasing fiber fraction and c/d ratio enhanced bond strength and residual bond strength through improved confinement by the surrounding SFRC. With increasing corrosion, bond strength at first retained its initial strength or increased slightly and then reduced at corrosion ratios beyond 6–8.88%. A bond strength model is proposed which considers the combined effect of corrosion ratio, fiber fraction, and c/d ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.