Abstract:In this study, the Pima Indian Diabetes dataset was categorized with 8 different classifiers. The data were taken from the University of California Irvine Machine Learning Repository's web site. As a classifier, 6 different neural networks [probabilistic neural network (PNN), learning vector quantization, feedforward networks, cascade-forward networks, distributed time delay networks (DTDN), and time delay networks], the artificial immune system, and the Gini algorithm from decision trees were used. The classifier's performance ratios were studied separately as accuracy, sensitivity, and specificity and the success rates of all of the classifiers are presented. Among these 8 classifiers, the best accuracy and specificity values were achieved with the DTDN and the best sensitivity value was achieved with the PNN.
Iron deficiency anemia (IDA) is a common type of anemia which most often occurs in young adult women. Detection of Iron deficiency requires blood tests and doctors' decision. Doing so can be costly and difficult especially in undeveloped countries. In this study, we developed an application by using Feedforward Networks (FFN), Cascade Forward Networks (CFN), Distributed Delay Networks (DDN), Time Delay Networks (TDN), Probabilistic Neural Network (PNN), and Learning Vector Quantization (LVQ) networks that can diagnose iron deficiency anemia in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.