Tubulointerstitial inflammation and progressive fibrosis are common pathways that lead to kidney failure in proteinuric nephropathies. Activation of the complement system has been implicated in the development of tubulointerstitial injury in clinical and animal studies, but the mechanism by which complement induces kidney injury is not fully understood. Here, we studied the effect of complement on the phenotype of tubular epithelial cells. Tubular epithelial cells exposed to serum proteins adopted phenotypic and functional characteristics of mesenchymal cells. Expression of E-cadherin protein decreased and expression of both ␣-smooth muscle actin protein and collagen I mRNA increased. Exposure of the cells to the complement anaphylotoxin C3a induced similar features. Treating with a C3a receptor (C3aR) antagonist prevented both C3a-and serum-induced epithelial-to-mesenchymal transition. In the adriamycin-induced proteinuria model, C3aR-deficient mice demonstrated less injury, preserved renal function, and improved survival compared with wild-type mice. Furthermore, the kidneys of C3aR-deficient mice had significantly less interstitial collagen I and ␣-smooth muscle actin. In summary, the complement anaphylotoxin C3a is an important mediator of glomerular and tubulointerstitial injury and can induce tubular epithelial-to-mesenchymal transition.
Increased exposure of the tubular epithelium to filtered protein is a proposed mechanism of progressive renal failure associated with glomerular disease, but how this protein overload translates into tubular damage remains unclear. We have examined a model of adriamycin-induced proteinuria to determine the effect of locally synthesized C3, the central proinflammatory protein of the complement cascade. C3-/- kidney isografts placed in wild-type C3+/+ mice were protected from proteinuria-associated complement activation, tubular damage, and progressive renal failure despite the presence of abundant circulating C3. The quantity of urinary protein was unaffected by the absence of C3, and thus the influence of C3 was not explained by alteration in the filtered protein load. These results suggest that local synthesis of complement from renal epithelial cells is a critical mediator of tubular damage in proteinuria-associated renal disease. Our results concur with previous findings of increased synthesis of C3 in human tubular epithelium exposed to high concentrations of protein in vitro. Because progressive renal damage in humans associates with proteinuria regardless of cause, our findings have implications for the pathogenesis and treatment of renal failure from many common causes, immunological and nonimmunological.
Experimental unilateral ureteral obstruction (UUO) is widely used to study renal fibrosis; however, renal injury can only be scored semiobjectively by histology. We sought to improve the UUO model by reimplanting the obstructed ureter followed by removal of the contralateral kidney, thus allowing longitudinal measurements of renal function. Mice underwent UUO for different lengths of time before ureteral reimplantation and contralateral nephrectomy. Measurement of blood urea nitrogen (BUN) allows objective evaluation of residual renal function. Seven weeks after reimplantation and contralateral nephrectomy, mean BUN levels were increased with longer duration of UUO. Interstitial expansion, fibrosis, and T-cell and macrophage infiltration were similar in kidneys harvested after 10 days of UUO or following 10 weeks of ureter reimplantation, suggesting that the inflammatory process persisted despite relief of obstruction. Urinary protein excretion after reimplantation was significantly increased compared to control animals. Our study shows that functional assessment of the formerly obstructed kidney can be made after reimplantation and may provide a useful model to test therapeutic strategies for reversing renal fibrosis and preserving or restoring renal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.