Skeletal muscle plays a primary role in metabolic health and physical performance. Conversely, skeletal muscle dysfunctions such as muscular dystrophy, atrophy and aging-related sarcopenia could lead to frailty, decreased independence and increased risk of hospitalization. Dietary intervention has become an effective approach to improving muscle health and function. Evidence shows that whole grains possess multiple health benefits compared with refined grains. Importantly, there is growing evidence demonstrating that bioactive substances derived from whole grains such as polyphenols, γ-oryzanol, β-sitosterol, betaine, octacosanol, alkylresorcinols and β-glucan could contribute to enhancing myogenesis, muscle mass and metabolic function. In this review, we discuss the potential role of whole-grain-derived bioactive components in the regulation of muscle function, emphasizing the underlying mechanisms by which these compounds regulate muscle biology. This work will contribute toward increasing awareness of nutraceutical supplementation of whole grain functional ingredients for the prevention and treatment of muscle dysfunctions.
Protein–polysaccharide complexes have received increasing attention as delivery systems to improve the stability and bioavailability of multiple bioactive compounds. However, deep and comprehensive understanding of the interactions between proteins and polysaccharides is still required for enhancing their loading efficiency and facilitating targeted delivery. In this study, we fabricated a type of protein–polysaccharide complexes using food-grade materials of β-lactoglobulin (β-Lg) and gum arabic (GA). The formation and characteristics of β-Lg–GA complexes were investigated by determining the influence of pH and other factors on their turbidity, zeta-potential, particle size and rheology. Results demonstrated that the β-Lg and GA suspension experienced four regimes including co-soluble polymers, soluble complexes, insoluble complexes and co-soluble polymers when the pH ranged from 1.2 to 7 and that β-Lg–GA complexes formed in large quantities at pH 4.2. An increased ratio of β-Lg in the mixtures was found to promote the formation of β-Lg and GA complexes, and the optimal β-Lg/GA ratio was found to be 2:1. The electrostatic interactions between the NH3+ group in β-Lg and the COO− group in GA were confirmed to be the main driving forces for the formation of β-Lg/GA complexes. The formed structure also resulted in enhanced thermal stability and viscosity. These findings provide critical implications for the application of β-lactoglobulin and gum arabic complexes in food research and industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.