Multiple two-dimensional laser rangefinders (LRFs) are applied in many applications like mobile robotics, autonomous vehicles, and three-dimensional reconstruction. The extrinsic calibration between LRFs is the first step to perform data fusion and practical application. In this paper, we proposed a simple method to calibrate LRFs based on a corner composed of three mutually perpendicular planes. In contrast to other methods that require a special pattern or assistance from other sensors, the trihedron corner needed in this method is common in daily environments. In practice, we can adjust the position of the LRFs to observe the corner until the laser scanning plane intersects with three planes of the corner. Then, we formed a Perspective-Three-Point problem to solve the position and orientation of each LRF at the common corner coordinate system. The method was validated with synthetic and real experiments, showing better performance than existing methods.
The combination of area-scan camera and 2D laser rangefinder (LRF) can capture both textural and geometrical information from a scene at the same time, and has been widely used in various fields. Due to the differences of the installation position and acquisition mode, calibrating the extrinsic parameters, including the rotation and translation, of two sensors is necessary for fusing the camera image and LRF data. In this paper, a simple and flexible extrinsic calibration method is proposed by only acquiring a checkerboard trihedron once. Using checkerboard trihedron as a mobile referenced control field, the proposed method includes three steps to calibrate the extrinsic parameters. First, the rotation and translation between the trihedron and LRF are solved with a simplified perspective-three-point (P3P) solution; Second, using the collinear equation of checkerboard corners and their pixels in the image, the camera is calibrated with respect to the trihedron; Third, combining the last two steps, the rotation and translation parameters between the camera and LRF are finally calibrated with the intermediate referenced trihedron. After a lot of simulation and real experiments, the proposed method has been demonstrated to have the advantages of simple operation, strong robustness and high accuracy in real experiment. INDEX TERMS Area-scan camera, 2D laser rangefinder, checkerboard trihedron, collinear equation, extrinsic calibration, P3P.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.