To study the high-temperature mechanical properties of potassium magnesium phosphate cement mortar and the high-temperature resistance of its laminates. Potassium magnesium phosphate cement (MKPC) was prepared by using heavy-burning magnesium oxide and potassium dihydrogen phosphate as the main raw materials, borax as the retarder, and compounded with a certain amount of fly ash and silica fume. The effect of the mass ratio of magnesium to phosphorus (M:P), compounded fly ash and silica fume on the setting time and mechanical properties of MKPC was investigated. Furthermore, based on the better M:P, the compressive strength of MKPC mortar was studied after 3 h of constant temperature at 400 °C, 600 °C, and 800 °C, and the effect of fly ash and silica fume on the high-temperature resistance of MKPC was analyzed. The high-temperature resistance of MKPC was further evaluated by analyzing the temperature variation of potassium magnesium phosphate cement laminate during a constant temperature of 650 °C for 3 h. The results showed that the mechanical properties of potassium magnesium phosphate cement were influenced by different raw material ratios, and the mechanical properties of potassium magnesium phosphate cement were optimal when M:P was 2:1, fly ash was 5% and silica fume was 15%. The internal temperature of MKPC laminate increased slowly with time, and its high-temperature resistance was better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.