Mouse embryos were mechanically bisected at the morula, early blastocyst or expanded blastocyst stages of development and cultured in vitro to the expanded blastocyst stage. Their capacity for postimplantation development was assessed after transfer to pseudopregnant foster mice. Embryos bisected at blastocyst stages had a higher survival rate in vitro than those bisected at the morula stage. Half-embryos had approximately half the number of cells at the blastocyst stage as control embryos, but the proportion of cells in the inner cell mass (ICM) was unaltered. The implantation rate of blastocysts derived from bisected embryos was only slightly lower than that of control embryos, but bisected embryos had a significantly reduced capacity to form fetuses. Histological analyses showed that failure to form a fetus is due to the absence of egg cylinder development, which correlates with the reduced number of cells in the ICM of bisected embryos. Postimplantation viability of half-embryos was significantly higher when blastocysts were transferred to Day-3 rather than Day-4 pseudopregnant recipients, presumably because of an increase in cell number in vivo prior to implantation.
Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.
ABSTRACT. We investigated the influence of different fluid resuscitation techniques on the number of myeloid-derived suppressor cells (MDSCs) in rats. Seventy-two healthy Sprague-Dawley rats were randomly divided into groups that received sham operation (Sham group), hypertonic saline (HRS group), lactated ringer's solution (LRS group), or crystalloid solution (LCRS group). Six rats from each group were sacrificed by cervical dislocation at 12, 24, and 48 h after resuscitation. The spleens were harvested under sterile conditions and spleen cell suspension was prepared. The number of MDSCs was detected using flow cytometry. The number of MDSCs in the Sham group did not differ significantly among the different time points. Compared with the Sham group, the number of MDSCs after the use of the different fluid resuscitation techniques increased to varying extents and the differences among the groups were significant. The number of MDSCs in the HRS group was much lower than that of the LRS and LCRS groups at both 24 and 48 h (P < 0.05). At 12 h, the number of MDSCs in the HRS group was significantly lower than that of the LRS group (P < 0.05). The differences between the HRS and LCRS groups were not statistically significant. Shortly after hemorrhagic shock resuscitation, the immune function of rats was suppressed to a varying extent and was gradually restored over time. Resuscitation with HRS alleviated the immunosuppression at the early stage after shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.