HMG-CoA reductase inhibitors improve endothelial function and exert antiproliferative effects on vascular smooth muscle cells of systemic vessels. This study was aimed to assess the protective effects of pravastatin (an HMG-CoA reductase inhibitor) against monocrotaline-induced pulmonary hypertension in rats. Pravastatin (PS, 10 mg/kg/day) or vehicle were given orally for 28 days to Wistar male rats injected or not with monocrotaline (MC, 60 mg/kg intraperitonealy) and treated or not by N(omega)-nitro-L-arginine methyl ester (L-NAME) 15 mg/kg/day. At 4 weeks, monocrotaline-injected rats developed severe pulmonary hypertension, with an increase in right ventricular pressure (RVP) and right ventricle/left ventricle+septum weight ratio (RV/LV+S), associated with a decrease in pulmonary artery dilation induced either by acetylcholine or sodium nitroprusside. Hypertensive pulmonary arteries exhibited an increase in medial thickness, medial wall area, endothelial cell apoptosis, and a decrease of endothelial nitric oxide synthase (eNOS) expression. Monocrotaline-rat lungs showed a significant decrease of eNOS expression (4080+/-27 vs 12189+/-761 arbitrary density units [ADU] for MC and control groups respectively, P<0.01) and a significant increase of cleaved caspase-3 expression by western blotting (Control=11628+/-2395 vs MC=2326+/-2243 ADU, P<0.05). A non-significant trend toward a reduced mortality was observed with pravastatin (relative risk of death = 0.33; 95% confidence interval [0.08-1.30], P= 0.12 for MC+PS vs MC groups). Pravastatine induced a protection against the development of the pulmonary hypertension (RVP in mmHg: 30+/-3 vs 45+/-4 and RV/LV+S: 0.46+/-0.04 vs 0.62+/-0.05 for MC+PS and MC groups respectively, P<0.05) and was associated with a significant reduction of MC-induced thickening (61+/-6 mum vs 81+/-3 mum for MC+PS and MC groups respectively, P= 0.01) of the medial wall of the small intrapulmonary arteries. Pravastatin partially restored acetylcholine-induced pulmonary artery vasodilation in MC rats (Emax=65+/-5% and 46+/-3% for MC+PS and MC group respectively, P<0.05) but had no effect on acetylcholine-induced pulmonary artery vasodilation in MC+L-NAME rats. It also prevented apoptosis and restored eNOS expression of pulmonary artery endothelial cells, as well as in the whole lung. Pravastatin reduces the development of monocrotaline-induced pulmonary hypertension and improves endothelium-dependent pulmonary artery relaxation, probably through a reduced apoptosis and a restored eNOS expression of endothelial cells.
Hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, so called statins, improve endothelial function and exert antiproliferative effects on vascular smooth muscle cells of systemic vessels. This study aimed at comparing the protective effects of two statins, pravastatin and atorvastatin, against monocrotaline (MC)-induced pulmonary hypertension in rats. Pravastatin or atorvastatin (PS or AS, 10 mg/kg per day) or vehicle were given orally for 28 days to Wistar male rats injected or not with MC (60 mg/kg intraperitoneally). At 4 weeks, MC-injected rats developed severe pulmonary hypertension, with an increase in right ventricular pressure (RVP) and right ventricle/left ventricle + septum weight ratio associated with a decrease in acetylcholine- or sodium-nitroprusside-induced pulmonary artery dilation observed in vitro. Hypertensive pulmonary arteries exhibited an increase in medial thickness and endothelial cell apoptosis and a decrease of endothelial nitric oxide synthase (eNOS) expression. MC-rat lungs showed a significant decrease of eNOS (P < 0.01) and increase of cleaved caspase-3 (P < 0.05) expression determined by Western blotting. PS (P = 0.02) but not AS (P = 0.30) significantly limited the development of pulmonary hypertension (RVP in mmHg: 30 +/- 3, 36 +/- 4 vs. 45 +/- 4 and 14 +/- 1 for MC + PS, MC + AS, MC, and control groups, respectively). Both statins significantly reduced MC-induced right ventricle hypertrophy [RV/left ventricular (LV) + S, in mg/g: 0.46 +/- 0.04, 0.39 +/- 0.03, 0.62 +/- 0.05 and 0.29 +/- 0.01 for MC + PS, MC + AS, MC, and control groups, respectively; P < 0.05),and reduced MC-induced thickening (61 +/- 6 microm, 82 +/- 5 microm, 154 +/- 4 microm, and 59 +/- 2 microm for MC + PS, MC + AS, MC, and control groups, respectively; P = 0.01) of small intrapulmonary artery medial wall, with MC + AS still being different from the control group. PS but not AS partially restored acetylcholine-induced pulmonary artery vasodilation in MC rats (E(max)=65 +/- 5%, 49 +/- 6%, 46 +/- 3%, and 76 +/- 4% for MC + PS, MC + AS, MC, and control groups, respectively; P < 0.05 for MC + PS vs. other groups). Both statins prevented apoptosis and restored eNOS expression of pulmonary artery endothelial cells as well as in the whole lung with a more pronounced effect with PS compared with AS. In conclusion, despite its effects on eNOS expression, apoptosis, and medial wall thickening, AS was unable to significantly reduce pulmonary hypertension and to restore endothelium-dependent relaxation, suggesting intermolecular differences between the two HMG-CoA reductase inhibitors in the protection against MC-induced hypertension.
We explored, using nuclear magnetic resonance (NMR) metabolomics and fatty acids profiling, the effects of a common nutritional complement, Curcuma longa, at a nutritionally relevant dose with human use, administered in conjunction with an unbalanced diet. Indeed, traditional food supplements have been long used to counter metabolic impairments induced by unbalanced diets. Here, rats were fed either a standard diet, a high level of fructose and saturated fatty acid (HFS) diet, a diet common to western countries and that certainly contributes to the epidemic of insulin resistance (IR) syndrome, or a HFS diet with a Curcuma longa extract (1% of curcuminoids in the extract) for ten weeks. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on the serum NMR profiles and fatty acid composition (determined by GC/MS) showed a clear discrimination between HFS groups and controls. This discrimination involved metabolites such as glucose, amino acids, pyruvate, creatine, phosphocholine/glycerophosphocholine, ketone bodies and glycoproteins as well as an increase of monounsaturated fatty acids (MUFAs) and a decrease of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Although the administration of Curcuma longa did not prevent the observed increase of glucose, triglycerides, cholesterol and insulin levels, discriminating metabolites were observed between groups fed HFS alone or with addition of a Curcuma longa extract, namely some MUFA and n-3 PUFA, glycoproteins, glutamine, and methanol, suggesting that curcuminoids may act respectively on the fatty acid metabolism, the hexosamine biosynthesis pathway and alcohol oxidation. Curcuma longa extract supplementation appears to be beneficial in these metabolic pathways in rats. This metabolomic approach highlights important serum metabolites that could help in understanding further the metabolic mechanisms leading to IR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.