Designing agroecosystems that are compatible with the conservation of biodiversity is a top conservation priority. However, the social variables that drive native biodiversity conservation in these systems are poorly understood. We devised a new approach to identify social-ecological linkages that affect conservation outcomes in agroecosystems and in social-ecological systems more broadly. We focused on coastal agroforests in Fiji, which, like agroforests across other small Pacific Islands, are critical to food security, contain much of the country's remaining lowland forests, and have rapidly declining levels of native biodiversity. We tested the relationships among social variables and native tree species richness in agroforests with structural equation models. The models were built with data from ecological and social surveys in 100 agroforests and associated households. The agroforests hosted 95 native tree species of which almost one-third were endemic. Fifty-eight percent of farms had at least one species considered threatened at the national or international level. The best-fit structural equation model (R = 47.8%) showed that social variables important for community resilience-local ecological knowledge, social network connectivity, and livelihood diversity-had direct and indirect positive effects on native tree species richness. Cash-crop intensification, a driver of biodiversity loss elsewhere, did not negatively affect native tree richness within parcels. Joining efforts to build community resilience, specifically by increasing livelihood diversity, local ecological knowledge, and social network connectivity, may help conservation agencies conserve the rapidly declining biodiversity in the region.
Calls for, and commitments to, forest restoration and regenerative agriculture are booming. While these practices are often conceptualized and implemented separately, in many contexts, research and practice at the intersection of forest restoration and diversified agriculture can accelerate the mutual goal of increasing biodiversity and ecosystem services on degraded lands. However, research on integrated forest‐agriculture practices, or agroforestry, often leaves out locally important native species and produces findings that are species‐specific, which together constrain research‐practice connections. We discuss a research design process that integrates two well‐established methods and allows for local customization in species selection, while also enabling study findings to be generalized to other sites. We illustrate this process through a case study from Hawai‘i and discuss the benefits, challenges, and potential further applications.
As the extent of secondary forests continues to expand throughout the tropics, there is a growing need to better understand the ecosystem services, including carbon (C) storage provided by these ecosystems. Despite their spatial extent, there are limited data on how the ecosystem services provided by secondary forest may be enhanced through the restoration of both ecological and agroecological functions in these systems. This study quantifies the above- and below-ground C stocks in a non-native secondary forest in Hawaiʻi where a community-based non-profit seeks to restore a multi-strata agroforestry system for cultural and ecological benefits. For soil C, we use the equivalent soil mass method both to estimate stocks and examine spatial heterogeneity at high resolution (eg. sub 5 m) to define a method and sampling design that can be replicated to track changes in C stocks on-site and elsewhere. The assessed total ecosystem C was ~388.5 Mg C/ha. Carbon stock was highest in trees (~192.4 Mg C/ha; ~50% of total C); followed by soil (~136.4 Mg C/ha; ~35% of total C); roots (~52.7 Mg C/ha; ~14% of total C); and was lowest in coarse woody debris (~4.7 Mg C/ha; ~1% of total C) and litter (~2.3 Mg C/ha; <1% of total C). This work provides a baseline carbon assessment prior to agroforest restoration that will help to better quantify the contributions of secondary forest transitions and restoration efforts to state climate policy. In addition to the role of C sequestration in climate mitigation, we also highlight soil C as a critical metric of hybrid, people-centered restoration success given the role of soil organic matter in the production of a suite of on- and off-site ecosystem services closely linked to local sustainable development goals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.