Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
We present a hiPSC-based 3D in vitro system suitable to test neurotoxicity (NT). Human iPSCs-derived 3D neurospheres grown in 96-well plate format were characterized timewise for 6-weeks. Changes in complexity and homogeneity were followed by immunocytochemistry and transmission electron microscopy. Transcriptional activity of major developmental, structural, and cell-type-specific markers was investigated at weekly intervals to present the differentiation of neurons, astrocytes, and oligodendrocytes. Neurospheres were exposed to different well-known toxicants with or without neurotoxic effect (e.g., paraquat, acrylamide, or ibuprofen) and examined at various stages of the differentiation with an ATP-based cell viability assay optimized for 3D-tissues. Concentration responses were investigated after acute (72 h) exposure. Moreover, the compound-specific effect of rotenone was investigated by a panel of ER-stress assay, TUNEL assay, immunocytochemistry, electron microscopy, and in 3D-spheroid based neurite outgrowth assay. The acute exposure to different classes of toxicants revealed distinct susceptibility profiles in a differentiation stage-dependent manner, indicating that hiPSC-based 3D in vitro neurosphere models could be used effectively to evaluate NT, and can be developed further to detect developmental neurotoxicity (DNT) and thus replace or complement the use of animal models in various basic research and pharmaceutical applications.
The effect of maternal stress on blastocyst quality, with respect to maternal metabolic status, was investigated in this study. We exposed female mice with different amounts of body fat to restraint stress and examined their blastocyst quality. Blood concentrations of corticosterone, leptin, adiponectin, insulin and glucose were measured in these females. Significantly lower stress-induced corticosterone elevations were observed in females with high and low amounts of body fat, indicating that the stress response was altered in these females. The basal leptin concentrations were significantly higher in females with high amounts of body fat than in females with low amounts of body fat, and stress induced different responses in these two groups of females. Our results showed that maternal stress can significantly increase the proportion of blastocysts that contain dead (apoptotic) cells in females with high and medium amounts of body fat. In females with low amounts of body fat, the proportion of blastocysts containing dead (apoptotic) cells was already increased before the stress exposure, and application of stress did not significantly change this parameter. Our results showed that the effects of maternal stress on early embryos can depend on the actual physiological status of the maternal organism exposed to stress.
Catecholamines play an important role in embryogenesis, and data obtained in the rodent model indicate that they can act even during the preimplantation period of development. Using RT-PCR with specific oligonucleotide primers distinguishing among all members of the adrenergic receptor family, we examined expression of adrenergic receptors in bovine and rabbit oocytes, morulas and blastocysts. We found several profiles of adrenoceptor mRNA expression. Transcripts for some receptor subtypes (bovine alpha 2 receptors, rabbit α2A, α2C, β1 and β2 receptors) were detected at all examined stages, which suggests receptor expression throughout (or at most stages) the preimplantation developmental period. Expression in oocytes but not at later stages was found in only one adrenoceptor subtype (rabbit α1B). In contrast, mRNA for several adrenoceptors was found in embryos but not in oocytes (bovine beta adrenoceptors and rabbit α1A). Nucleotide sequences of our PCR products amplified in rabbit oocytes, and preimplantation embryos represent the first published mRNA sequences (partial sequences coding at least one transmembrane region) of rabbit α2C, β1 and β2 adrenoceptors. Our results suggest that the expression of adrenergic receptors can be a general feature of mammalian oocytes and preimplantation embryos. On the other hand, comparison of three mammalian species (cattle, rabbit and mouse) revealed possible interspecies differences in the expression of particular adrenoceptor subtypes. Our results support the opinion that stress mediators can act directly in cells of preimplantation embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.