Abstract. Motivated by applications to program verification, we study a decision procedure for satisfiability in an expressive fragment of a theory of arrays, which is parameterized by the theories of the array elements. The decision procedure reduces satisfiability of a formula of the fragment to satisfiability of an equisatisfiable quantifier-free formula in the combined theory of equality with uninterpreted functions (EUF), Presburger arithmetic, and the element theories. This fragment allows a constrained use of universal quantification, so that one quantifier alternation is allowed, with some syntactic restrictions. It allows expressing, for example, that an assertion holds for all elements in a given index range, that two arrays are equal in a given range, or that an array is sorted. We demonstrate its expressiveness through applications to verification of sorting algorithms and parameterized systems. We also prove that satisfiability is undecidable for several natural extensions to the fragment. Finally, we describe our implementation in the πVC verification system.
We present a complete method for synthesizing lexicographic linear ranking functions supported by inductive linear invariants for loops with linear guards and transitions. Proving termination via linear ranking functions often requires invariants; yet invariant generation is expensive. Thus, we describe a technique that discovers just the invariants necessary for proving termination. Finally, we describe an implementation of the method and provide extensive experimental evidence of its effectiveness for proving termination of C loops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.