Vehicle detection is still a challenge in object detection. Although there are many related research achievements, there is still a room for improvement. In this context, this paper presents a method that utilizes the ResUNet-a architecture – that is characterized by its high accuracy - to extract features for improved vehicle detection performance. Edge detection is used on these features to reduce the number of calculations. The removal of shadows by combining color and contour features - for increased detection accuracy - is one of the advantages of the proposed method and it is a critical step in improving vehicle detection. The obtained results show that the proposed method can detect vehicles with an accuracy of 92.3%. This - in addition to the obtained F-measure and η values of 0.9264 and 0.8854, respectively - clearly state that the proposed method - which is based on deep learning and edge detection - creates a reasonable balance between speed and accuracy.
In traffic monitoring for video analysis systems, vehicle shadows have a negative effect on their performance. Shadow detection and removal are essential steps in accurate vehicle detection. In this paper, a new method is proposed for shadow detection using a novel convolution neural network architecture. In the proposed method, the edges of the image are first extracted. Edge extraction reduces calculation, and accelerates the execution of the method. The background of the frame is then removed and the main features are extracted using the ResUNet-a architecture. This architecture consists of two parts: the encoder and the decoder, which detect the shadow at the decoder output and then remove it. Deep learning is used to detect shadows, which increases the accuracy of the analysis. The ResUNet-a architecture can learn complex, hierarchical, and appropriate features from the image for accurate feature detection and discarding the irrelevant shadow, thereby outperforming conventional filters.The results show that the proposed method provides better performance on NJDOT traffic video, highway-1, and highway-3 datasets than popular shadow removal methods. Also, the method improves the evaluation criteria such as F-measure and runtime. The F-measure is 94 and 93% for highway-1 and highway-3, respectively.
A deep convolution neural network (CNN) is used to detect the edge. First, the initial features are extracted using VGG-16, which consists of 5 convolutions, each step is connected to a pooling layer. For edge detection of the image, it is necessary to extract information of different levels from each layer to the pixel space of the edge, and then re-extract the feature, and perform sampling. The attributes are mapped to the pixel space of the edge and a threshold extractor of the edges. It is then compared with a background model. Using background subtraction, foreground objects are detected. The Gaussian mixture model is used to detect the vehicle. This method is performed on three videos, and compared with other methods; the results show higher accuracy. Therefore, the proposed method is stable against sharpness, light, and traffic. Moreover, to improve the detection accuracy of the vehicle, shadow removal conducted, which uses a combination of color and contour features to identify the shadow. For this purpose, the moving target is extracted, and the connected domain is marked to be compared with the background. The moving target contour is extracted, and the direction of the shadow is checked according to the contour trend to obtain shadow points and remove these points. The results show that the proposed method is very resistant to changes in light, high-traffic environments, and the presence of shadows, and has the best performance compared to the current methods.
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy images with Gaussian noise and salt and pepper noise. As the image edge frequencies are close to the noise frequency band, the edge detection using the conventional edge detection methods is challenging. The movement of ants depends on local discrepancy of image's intensity value. The simulation results compared with existing conventional methods and are provided to support the superior performance of ACO algorithm in noisy images edge detection. Canny, Sobel and Prewitt operator have thick, non continuous edges and with less clear image content. But the applied method gives thin and clear edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.