Single-photon sources are required for quantum technologies and can be created from individual atoms and atom-like defects. Erbium ions produce single photons at low-loss fiber optic wavelengths, but they have low emission rates, making them challenging to isolate reliably. Here, we tune the size of gold double nanoholes (DNHs) to enhance the emission of single erbium emitters, achieving 50× enhancement over rectangular apertures previously demonstrated. This produces enough enhancement to show emission from single nanocrystals at wavelengths not seen in our previous work, i.e., 400 and 1550 nm. We observe discrete levels of emission for nanocrystals with low numbers of emitters and demonstrate isolating single emitters. We describe how the trapping time is proportional to the enhancement factor for a given DNH structure, giving us an independent way to measure the enhancement. This shows a promising path to achieving single emitter sources at 1550 nm.
Background: Limb-girdle muscular dystrophies are a group of genetically heterogeneous diseases that are inherited in both autosomal dominant (LGMDD) and autosomal recessive forms (LGMDR), the latter is more common especially in populations with high consanguineous marriages like Iran. In the present study, we aimed to investigate the genetic basis of patients who are suspicious of being affected by LGMDR. DNA samples of 60 families suspected of LGMD were extracted from their whole blood. Four short tandem repeat (STR) markers for each candidate genes related to LGMD R1 (calpain3 related)-R6 (δ-sarcoglycan-related) were selected, and all these 24 STRs were applied in two sets of multiplex PCR. After autozygosity mapping, Sanger sequencing and variant analysis were done. Predicting identified variants' effect was performed using in-silico tools, and they were interpreted according to the American College of Medical Genomics and Genetics (ACMG) guideline. MLPA was used for those patients who had large deletions. Fresh muscle specimens were taken from subjects and were evaluated using the conventional panel of histochemical stains. Results: forty out of sixty families showed homozygote haplotypes in CAPN3, DYSF, SGCA, and SGCB genes. The exons and intron-exon boundaries of the relevant genes were sequenced and totally 38 mutations including CAPN3 (n = 15), DYSF (n = 9), SGCB (n = 11), and SGCA (n = 3) were identified. Five out of them were novel. The most prevalent form of LGMDs in our study was calpainopathy followed by sarcoglycanopathy in which betasarcoglycanopathy was the most common form amongst them. Exon 2 deletion in the SGCB gene was the most frequent mutation in this study. We also reported evidence of a possible founder effect in families with mutations in DYSF and SGCB genes. We also detected a large consanguineous family suffered from calpainopathy who showed allelic heterogeneity. Conclusions: This study can expand our knowledge about the genetic spectrum of LGMD in Iran, and also suggest the probable founder effects in some Iranian subpopulations which confirming it with more sample size can facilitate our genetic diagnosis and genetic counseling.
The reversible insulating-to-conducting phase transition (ICPT) of vanadium dioxide (VO2) makes it a versatile candidate for the implementation of integrated optical devices. In this paper, a bi-functional in-line optical device based on a four-layer stack of PMMA/graphene/VO2/graphene deposited on a side-polished fiber (SPF) is proposed. The structure can be employed as an ultra-compact TE modulator or a TM-pass polarizer, operating at 1.55 μm. We show that the ICPT characteristic can be used for polarization-selective mode shaping (PSMS) to manipulate orthogonal modes separately. On the one hand, as an optical modulator, the PSMS is used to modify mode profiles so that the TE mode attenuation is maximized in the off-state (and IL is minimized in the on-state), while the power carried by the TM mode remains unchanged. As a result, a TE modulator with an ultrahigh extinction ratio (ER) of about ER = 165 dB/mm and a very low insertion loss (IL) of IL = 2.3 dB/mm is achieved. On the other hand, the structure can act as a TM-pass polarizer featuring an extremely high polarization extinction ratio (PER) of about PER = 164 dB/mm and a low TM insertion of IL = 3.86 dB/mm. The three-dimensional heat transfer calculation for the ICPT process reveals that the response time of the modulator is in the order of few nanoseconds. Moreover, the required bias voltage of the proposed device is calculated to be as low as 1.1 V. The presented results are promising a key step towards the realization of an integrated high-performance in-line modulator/polarizer.
Severe viral infections of the skin can occur in patients with inborn errors of immunity (IEI). We report an all-in-one whole-transcriptome sequencing-based method by RNA-Seq on a single skin biopsy for concomitantly identifying the cutaneous virome and the underlying IEI. Skin biopsies were obtained from healthy and lesional skin from patients with cutaneous infections suspected to be of viral origin. RNA-Seq was utilized as the first-tier strategy for unbiased human genome-wide rare variant detection. Reads unaligned to the human genome were utilized for the exploration of 926 viruses in a viral genome catalog. In 9 families studied, the patients carried pathogenic variants in 6 human IEI genes, including IL2RG, WAS, CIB1, STK4, GATA2, and DOCK8. Gene expression profiling also confirmed pathogenicity of the human variants and permitted genome-wide homozygosity mapping, which assisted in identification of candidate genes in consanguineous families. This automated, online, all-in-one computational pipeline, called VirPy, enables simultaneous detection of the viral triggers and the human genetic variants underlying skin lesions in patients with suspected IEI and viral dermatosis.
Prenatal diagnosis (PND) may be complicated with sample mix-up; maternal cell contamination, non-paternity and allele drop out at different stages of diagnosis. Aneuploidy screening if combined with PND for a given single gene disorder, can help to detect any common aneuploidy as well as aiding sample authenticity and other probable complications which may arise during such procedures. This study was carried out to evaluate the effectiveness of a novel panel of STR markers combined as a multiplex PCR kit (HapScreen™ kit) for the detection of β-thalassemia, aneuploidy screening, ruling in/out maternal cell contamination (MCC), and sample authenticity. The kit uses 7 STR markers linked to β-globin gene (HBB) as well as using 9 markers for quantitative analysis of chromosomes 21, 18, 13, X and Y. Selection of the markers was to do linkage analysis with β-globin gene, segregation analysis and to perform a preliminary aneuploidy screening of fetal samples respectively. These markers (linked to the β-globin gene) were tested on more than 2185 samples and showed high heterozygosity values (68.4–91.4%). From 2185 fetal cases we found 3 cases of non-paternity, 5 cases of MCC, one case of sample mix-up and one case of trisomy 21 which otherwise may have end up to misdiagnosis. This kit was also successfully used on 231 blastomeres for 29 cases of pre-implantation genetic diagnosis (PGD) and screening (PGS). The markers used for simultaneous analysis of haplotype segregation and aneuploidy screening proved to be very valuable to confirm results obtained from direct mutation detection methods (i.e. ARMS, MLPA and sequencing) and aneuploidy screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.