The seminal observation that mechanical signals can elicit changes in biochemical signalling within cells, a process commonly termed mechanosensation and mechanotransduction, has revolutionized our understanding of the role of cell mechanics in various fundamental biological processes, such as cell motility, adhesion, proliferation and differentiation. In this Review, we will discuss how the interplay and feedback between mechanical and biochemical signals control tissue morphogenesis and cell fate specification in embryonic development.
MinireviewD Dr ru ug g--t th he er ra ap py y n ne et tw wo or rk ks s a an nd d t th he e p pr re ed di ic ct ti io on n o of f n no ov ve el l d dr ru ug g t ta ar rg ge et ts s Despite a significant and continuous increase in medical research spending, the number of new drugs approved and new drug targets identified each year has remained almost constant for the past 20-25 years, with about 20 new drugs and about five new targets per year. Lengthy development procedures and the high risk of unexpected side-effects in advanced-stage clinical trials reduce the ability of the drug development process to be innovative. At this rate it will take more than 300 years to double the number of available drugs [1]. However, there are several ways to overcome these burdens. Promising areas of drug design include: wide-range screens of existing drugs, seeking novel applications; combination therapy, that is, the use of several drugs or short DNA oligomers, called aptamers, together [2][3][4]; and the development of multi-target drugs [5].The organization of our rapidly growing knowledge on diseases, disease-related genes, drug targets and their structures, and drugs and their chemical structures gives us another exciting way to discover novel areas of drug development. Several networks have recently been constructed to help drug discovery [1,[6][7][8][9]. In the network concept a complex system is perceived as a set of interacting elements bound together by links. Links usually have a weight, which characterizes their strength such as the affinity of binding between the two elements, or the propensity of one element to act on the other. Links can also be directional, when one of the elements has a larger influence on the other than vice versa [10,11].In a recent study in BMC Pharmacology, Nacher and Schwartz [8] compiled a drug-therapy network in which all US-approved drugs and associated human therapies -that is, the therapeutic properties of the drugs involved according to the Anatomic Therapeutic Chemical (ATC) classification -were connected to each other. From a bipartite network of therapies and drugs (in which therapies were connected to drugs, but drugs were not connected to other drugs or therapies to other therapies) they constructed two other networks: a drug network, in which two drugs were connected if they were both involved in at least one common therapy; and a therapy network, in which two therapies were connected if a particular drug was implicated in both therapies. Their analysis [8] provides the first view of the relationships between therapies as defined by drug-A Ab bs st tr ra ac ct t A recent study in BMC Pharmacology presents a network of drugs and the therapies in which they are used. Network approaches open new ways of predicting novel drug targets and overcoming the cellular robustness that can prevent drugs from working.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.