Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.
In this letter, we present a sapphire direct bonding method using plasma surface activation, hydrophilic pre-bonding, and high temperature annealing. Through the combination of sapphire inductively coupled plasma etching and the direct bonding process, a vacuum-sealed cavity employable for high temperature applications is achieved. Cross-sectional scanning electron microscopy (SEM) research of the bonding interface indicates that the two sapphire pieces are well bonded and the cavity structure stays intact. Moreover, the tensile testing shows that the bonding strength of the bonding interface is in excess of 7.2 MPa. The advantage of sapphire direct bonding is that it is free from the various problems caused by the mismatch in the coefficients of thermal expansion between different materials. Therefore, the bonded vacuum-sealed cavity can be potentially further developed into an all-sapphire pressure sensor for high temperature applications.
An aluminum nitride (AlN) based patch antenna-type high-temperature wireless passive sensor is reported to operate as both a sensor and an antenna, which integrates in situ measurement/sensing with remote wireless communication at the same time. The sensor is small, easy to manufacture, highly sensitive and has a high operating temperature; it can be used in high-temperature, chemically corrosive and other harsh environments. The sensing mechanism of the sensor, the dielectric constant of the AlN ceramic substrate, increases with rising temperature, which reduces the resonant frequency of the sensor. Thus, the temperature can be measured by detecting changes in the sensor’s resonant frequency. High-Frequency Simulation Structure (HFSS) software is used to determine the structure and size of the sensor, which is then fabricated using thick-film technology. The substrate of the sensor is AlN ceramic due to its outstanding thermal resistance at high temperature; and its conductors (the radiation patch and the ground under the substrate) are silver-palladium alloy sintered form silver–palladium paste. A vector network analyzer reveals that the sensor’s operating range extends to 700 °C. Furthermore, its resonant frequency decreases from 2.20 GHz to 2.13 GHz with increasing temperature from room temperature (25 °C) to 700 °C, with an absolute sensitivity of 104.77 KHz/°C. Our work verifies the feasibility of measuring high temperatures using AlN-based patch antenna wireless passive temperature sensors, and provides a new material and temperature sensitive structure for high-temperature measurement in harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.