Gastric cancer (GC) is one of the leading causes of cancer-related deaths and shows high levels of heterogeneity. The development of a specific prognostic model is important if we are to improve treatment strategies. Pyroptosis can arise in response to H. pylori, a primary carcinogen, and also in response to chemotherapy drugs. However, the prognostic evaluation of GC to pyroptosis is insufficient. Consensus clustering by pyroptosis-related regulators was used to classify 618 patients with GC from four GEO cohorts. Following Cox regression with differentially expressed genes, our prognosis model (PS-score) was built by LASSO-Cox analysis. The TCGA-STAD cohort was used as the validation set. ESTIMATE, CIBERSORTx, and EPIC were used to investigate the tumor microenvironment (TME). Immunotherapy cohorts by blocking PD1/PD-L1 were used to investigate the treatment response. The subtyping of GC based on pyroptosis-related regulators was able to classify patients according to different clinical traits and TME. The difference between the two subtypes identified in this study was used to develop a prognosis model which we named “PS-score.” The PS-score could predict the prognosis of patients with GC and his/her overall survival time. A low PS-score implies greater inflammatory cell infiltration and better response of immunotherapy by PD1/PD-L1 blockers. Our findings provide a foundation for future research targeting pyroptosis and its immune microenvironment to improve prognosis and responses to immunotherapy.
The development of chemotherapy resistance is the most vital obstacle to clinical efficacy in gastric cancer (GC). The dysregulation of the Wnt/beta-catenin signaling pathway is critically associated with GC development and chemotherapy resistance. Ferroptosis is a form of regulated cell death, induced by an iron-dependent accumulation of lipid peroxides during chemotherapy. However, whether the Wnt/beta-catenin signaling directly controls resistance to cell death, remains unclear. Here, we show that the activation of the Wnt/beta-catenin signaling attenuates cellular lipid ROS production and subsequently inhibits ferroptosis in GC cells. The beta-catenin/TCF4 transcription complex directly binds to the promoter region of GPX4 and induces its expression, resulting in the suppression of ferroptotic cell death. Concordantly, TCF4 deficiency promotes cisplatin-induced ferroptosis in vitro and in vivo. Thus, we demonstrate that the aberrant activation of the Wnt/beta-catenin signaling confers ferroptosis resistance and suggests a potential therapeutic strategy to enhance chemo-sensitivity for advanced GC patients.
These results demonstrate that cardiomyocyte apoptosis progressively develops during the early stage after severe burn, which may in part contribute to burn-induced cardiac dysfunction. Myocardial inflammatory responses, evidenced by the increased infiltration of neutrophils, as well as production of TNF-alpha probably because of the activation of p38 MAP kinase, may be involved in burn-induced cardiomyocyte apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.