In recent years, circular RNAs have been shown to serve as essential regulators in several human cancers. Nevertheless, the function and mechanism of CircRNA in cervical cancer remain elusive. In the present study, we showed that hsa_circRNA_101996 was highly expressed in cervical cancer tissues compared with matched normal tissues by bioinformatics analysis. We showed that the expression level of hsa_circRNA_101996 in cervical cancer tissues was positively correlated with TNM stage, tumor size, and lymph node metastasis. Moreover, higher levels of hsa_circRNA_101996 were related to poor outcomes of cervical cancer patients. We found that knockdown of hsa_circRNA_101996 significantly inhibited the proliferation, cell cycle, migration, and invasion of cervical cancer cells. Mechanistically, we demonstrated that hsa_circRNA_101996 served as a sponge of miR‐8075, which targeted TPX2 in cervical cancer cells. We showed that miR‐8075 that was downregulated in cervical cancer tissues repressed cervical cancer cell proliferation, migration, and invasion. Furthermore, we validated that upregulation of TPX2 by hsa_circRNA_101996‐mediated inhibition of miR‐8075 contributed to cervical cancer proliferation, migration, and invasion. Taken together, our findings revealed a novel mechanism that hsa_circRNA_101996‐miR‐8075‐TPX2 network promoted cervical cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.