Warburg effect is a dominant phenotype of most cancer cells. Here we show that this phenotype depends on its environment. When cancer cells are under regular culture condition, they show Warburg effect; whereas under lactic acidosis, they show a nonglycolytic phenotype, characterized by a high ratio of oxygen consumption rate over glycolytic rate, negligible lactate production and efficient incorporation of glucose carbon(s) into cellular mass. These two metabolic modes are intimately interrelated, for Warburg effect generates lactic acidosis that promotes a transition to a nonglycolytic mode. This dual metabolic nature confers growth advantage to cancer cells adapting to ever changing microenvironment.
Solid tumours are dependent on glucose, but are generally glucose-deprived due to poor vascularization. Nevertheless, cancer cells can generally survive glucose deprivation better than their normal counterparts. Thus, to render cancer cells sensitive to glucose depletion may potentially provide an effective strategy for cancer intervention. We propose that lactic acidosis, a tumour microenvironment factor, may allow cancer cells to develop resistance to glucose deprivation-induced death, and that disruption of lactic acidosis may resume cancer cells' sensitivity to glucose depletion. Lactic acidosis, lactosis, or acidosis was generated by adding pure lactic acid, sodium lactate, or HCl to the culture medium. Cell death, cell cycle, autophagy, apoptosis, and gene expression profiling of the surviving cancer cells under glucose deprivation with lactic acidosis were determined. Under glucose deprivation without lactic acidosis, 90% of 4T1 cancer cells died within a single day; in a sharp contrast, under lactic acidosis, 90% of 4T1 cells died in a period of 10 days, with viable cells identified even 65 days after glucose was depleted. Upon glucose restoration, surviving cells resumed proliferation. Lactic acidosis also significantly extended survival of other cancer cells under glucose deprivation. G1/G0 arrest, autophagy induction, and apoptosis inhibition were tightly associated with lactic acidosis-mediated resistance to glucose deprivation. Lactosis alone had no effect on cell survival under glucose deprivation; acidosis alone can prolong cell survival time but is not as potent as lactic acidosis. Thus, the ability of cancer cells to resist glucose deprivation-induced cell death is conferred, at least in part, by lactic acidosis, and we envision that disrupting the lactic acidosis may resume the sensitivity of cancer cells to glucose deprivation.
Translation is a fundamental cellular process, and its dysregulation can contribute to human diseases such as cancer. During translation initiation the eukaryotic initiation factor 2 (eIF2) forms a ternary complex (TC) with GTP and the initiator methionyl-tRNA (tRNAi), mediating ribosomal recruitment of tRNAi. Limiting TC availability is a central mechanism for triggering the integrated stress response (ISR), which suppresses global translation in response to various cellular stresses, but induces specific proteins such as ATF4. This study shows that OLA1, a member of the ancient Obg family of GTPases, is an eIF2-regulatory protein that inhibits protein synthesis and promotes ISR by binding eIF2, hydrolyzing GTP, and interfering with TC formation. OLA1 thus represents a novel mechanism of translational control affecting de novo TC formation, different from the traditional model in which phosphorylation of eIF2α blocks the regeneration of TC. Depletion of OLA1 caused a hypoactive ISR and greater survival in stressed cells. In vivo, OLA1-knockdown rendered cancer cells deficient in ISR and the downstream proapoptotic effector, CHOP, promoting tumor growth and metastasis. Our work suggests that OLA1 is a novel translational GTPase and plays a suppressive role in translation and cell survival, as well as cancer growth and progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.