The capabilities of electrically small spherical helical antennas for wireless power transmission at small and moderate distances are analyzed. Influence of design on antenna radiation resistance, efficiency, and mode ratio is examined. These are the factors that, according to the theoretical considerations depicted herein, govern the maximum transfer performances. Various designs and configurations are considered for the purpose, with accent on small-size receivers suitable for implementation in powering common-sized gadgets. It is shown that spherical helix design is easily manipulated to achieve a reduced antenna size. Good radiation characteristics and impedance match are maintained by multiple-arm folded antenna design and by adjusting the separation between the arms.
The Internet of Things (IoT) has a lot to offer and contribute to the retail industry, from the innovations in retail store experience to the increased efficiency in the store management and supply chain optimization. On its way to real-world applications, Radio Frequency IDentification (RFID) became the main enabler for the final IoT deployment. However, to improve the technology performance even further, it is important to overcome the fundamental limitations of its physical layer and, consequently, to better understand how to use the technology in an optimal way. The analysis provided in this paper employs the simulation/measurement study on RFID technology advancement and the influence of radio propagation in a realistic model of the retail environment. The results are provided for different types of the retail layouts and materials that influence tag responsiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.