The performances of high-speed machine tools depend not only on the speed, power, torque, dynamic and static stiffness, but also on the thermal behavior of the spindle. These parameters directly affect the productivity and quality of machining operations. This paper presents a 3-D finite element thermal model, which was based on the thermo mechanical bearing model and the numerical model of the spindle. Based on thermo mechanical analysis of bearings with angular contact, generated heat and thermal contact resistance are determined for each position of the ball. To provide the most accurate analysis possible in determining thermal contact resistance , bearings are divided into several zones based on the geometry of their cross-section. The aforementioned constraints have been applied to the 3-D FEM model which allowed for establishing temperature field distribution, and spindle thermal balance. In order to prove the efficacy of the proposed model, experimental measurements of spindle and bearing temperatures were done by using thermocouples and thermal imager.
The success of the hip arthroplasty surgery largely depends on the endoprosthesis adjustment to the patient's femur. This implies that the position of the femoral bone in relation to the pelvis is preserved and that the endoprosthesis position ensures its longevity. Dimensions and body shape of the hip joint endoprosthesis and its position after the surgery depend on a number of geometrical parameters of the patient's femur. One of the most suitable methods for determination of these parameters involves 3D reconstruction of femur, based on diagnostic images, and subsequent determination of the required geometric parameters.In this paper, software for automated determination of geometric parameters of the femur is presented. Detailed software development procedure for the purpose of faster and more efficient design of the hip endoprosthesis that ensures patients' specific requirements is also offered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.