Simple, low-cost environmental design interventions can provide structure to support and improve HCW safety in BCUs. These interventions should be implemented in both current and future BCUs.
Background Few data exist to guide the physical design of biocontainment units, particularly the doffing area. This can impact the contamination risk of healthcare workers (HCWs) during doffing of personal protective equipment (PPE). Methods In phase I of our study, we analyzed simulations of a standard patient care task with 56 trained HCWs focusing on doffing of high-level PPE. In phase II, using a rapid cycle improvement approach, we tested different balance aids and redesigned doffing area layouts with 38 students. In phase III, we tested 1 redesigned layout with an additional 10 trained HCWs. We assessed the effectiveness of design changes on improving the HCW performance (measured by occurrence and number of risky behaviors) and reducing the physical and cognitive load by comparing the results from phase I and phase III. Results The physical load was highest when participants were removing their shoe covers without any balance aid; the use of a chair required the lowest physical effort, followed by horizontal and vertical grab bars. In the revised design (phase III), the overall performance of participants improved. There was a significant decrease in the number of HCW risky behaviors (P = .004); 5 risky behaviors were eliminated and 2 others increased. There was a significant decrease in physical load when removing disposable shoe covers (P = .04), and participants reported a similar workload in the redesigned doffing layout (P = .43). Conclusions Through optimizing the design and layout of the doffing space, we reduced risky behaviors of HCWs during doffing of high-level PPE.
Objective: This article proposes a method for evaluating the design affordances of primary care exam rooms from the perspectives of users using functional scenario (FS) analysis. Goal: This study aims to develop quantifiable criteria and spatial metrics for evaluating how exam room design supports the needs of different users. These criteria and metrics can be used in the early stages of the design process to choose between alternatives. Background: The primary care exam room is an essential space in healthcare, as it is the first point of contact between the healthcare provider and the patient. However, there is a lack of rigorous evaluation metrics for exam room design that supports improved user experiences and better health outcomes. Method: A total of nine primary care exam rooms were analyzed using FS analysis. We identified three key user groups involved in the clinical examination process—providers, patients, and care partners—and translated their needs into FSs. We developed spatial metrics for each FS to quantify the extent to which the needs were spatially supported. Results: We developed 11 FSs in total: three from the providers’, five from the patients’, and three from the care partners’ perspectives. The results revealed possible design strategies for improved user experiences. Conclusions: We quantitatively measured the affordance of primary care exam room design for multiple stakeholders. We expect that the criteria and metrics presented in this article will improve the understanding of different users’ perspectives and provide new design guidance for improved user experiences.
Objectives: This study aimed to develop a better understanding of the unique needs of patients with highly infectious diseases and their perceptions of being placed in isolation. We explore the subjective experiences of patients treated for Ebola in a biocontainment unit (BCU) and the healthcare personnel who cared for them. Background: The 2014 Ebola outbreak and the COVID-19 pandemic have brought to focus some major challenges of caring for patients with serious infectious diseases. Previous studies on BCU design have looked at ways to prevent self- and cross-contamination, but very few have examined how the built environment can support an improved patient experience. Method: A qualitative study was conducted with four patients treated for Ebola and two critical care nurses who provided direct care to them at a single BCU in the U.S. Data were collected through in-depth semi-structured interviews to capture the actual patients’ perception and experience of isolation. The interviews were analyzed using the thematic analysis approach. Results: The Ebola patients placed in source isolation perceived the BCU as an artificial environment where they lacked control, agency, autonomy, and independence. The physical separation from other patients, visitor restrictions, and staff wearing PPE contributed to feelings of social and emotional isolation, and loneliness. Conclusions: The isolation can take a toll on physiological and psychological well-being. A thoughtful design of isolation units may improve patients’ experience by supporting human and social interactions, empowering patients through space flexibility and personalization of space, and supporting a more holistic approach to isolation care.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.