Background Few data exist to guide the physical design of biocontainment units, particularly the doffing area. This can impact the contamination risk of healthcare workers (HCWs) during doffing of personal protective equipment (PPE). Methods In phase I of our study, we analyzed simulations of a standard patient care task with 56 trained HCWs focusing on doffing of high-level PPE. In phase II, using a rapid cycle improvement approach, we tested different balance aids and redesigned doffing area layouts with 38 students. In phase III, we tested 1 redesigned layout with an additional 10 trained HCWs. We assessed the effectiveness of design changes on improving the HCW performance (measured by occurrence and number of risky behaviors) and reducing the physical and cognitive load by comparing the results from phase I and phase III. Results The physical load was highest when participants were removing their shoe covers without any balance aid; the use of a chair required the lowest physical effort, followed by horizontal and vertical grab bars. In the revised design (phase III), the overall performance of participants improved. There was a significant decrease in the number of HCW risky behaviors (P = .004); 5 risky behaviors were eliminated and 2 others increased. There was a significant decrease in physical load when removing disposable shoe covers (P = .04), and participants reported a similar workload in the redesigned doffing layout (P = .43). Conclusions Through optimizing the design and layout of the doffing space, we reduced risky behaviors of HCWs during doffing of high-level PPE.
Purpose: This study explores how aspects of lighting in patient rooms are experienced and evaluated by nurses while performing simulated work under various lighting conditions. The lighting conditions studied represent design standards consistent with different environments of care—traditional, contemporary, and future. Background: Recent advances in lighting research and technology create opportunities to use lighting in hospital rooms to improve everyday experience and provide researchers with opportunities to explore a new set of research questions about the effects of lighting on patients, guests, and staff. This study focuses on the experience of nurses delivering simulated patient care. Method: Perceptions of each of the 13 lighting conditions were evaluated by nurses using rating scales for difficulty of task completion, comfort, intensity, appropriateness of the lighting color, and naturalness of the lighting during the task. The nurses’ ratings were analyzed alongside qualitative reflections to provide insight into their responses. Results: Significant differences were found for several a priori hypotheses. Interesting findings provide insight into lighting to support circadian synchronization, lighting at night, the distribution of light in the patient room and the use of multiple lighting zones, and the use of colored lighting. Conclusion: The results of this study provide insight into potential benefits and concerns of these new features for patient room lighting systems and reveal gaps in the existing evidence base that can inform future investigations.
Objective: This study explores whether “future” lighting systems that provide greater control and opportunity for circadian synchronization are acceptable to participants in the role of patients. Background: Tunable, dimmable light emitting diode systems provide multiple potential benefits for healthcare. They can provide significant energy savings, support circadian synchronization by varying the spectrum and intensity of light over the course of the day, address nighttime navigation needs, and provide user-friendly control. There is an emerging understanding of the important visual and nonvisual effects of light; however, important questions remain about the experience and acceptability of this “future” lighting if we are to adopt it broadly. Methods: Volunteer participants (34) performed a series of tasks typical of patients, such as reading or watching a video, in a full-scale simulated inpatient room. Each participant conducted these tasks under 12 lighting conditions in a counterbalanced order that included varying illuminance levels, correlated color temperatures (CCTs), and in a few conditions, saturated colors. The participants rated each lighting condition on comfort, intensity, appropriateness, and naturalness. Results and Conclusions: The participants found that conditions with CCTs of 5,000 K and higher were significantly less comfortable and less natural than conditions with lower CCTs. Conditions with lighting distributed in multiple zones in the patient room were viewed more favorably than a traditional overbed configuration. The participants in this simulated patient study reacted negatively to colored lighting on the footwall of the room but found a mixture of warmer and cooler luminaire CCTs acceptable.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.