This paper presents the design, implementation and validation of a novel spherical Autonomous Underwater Vehicle (AUV) prototype, developed for inspection and exploration of flooded mine tunnel networks. The unique mechanical, electrical and hardware design is presented, as well as the development of a theoretical 6 degree-of-freedom (DOF) highfidelity dynamic model of the system. A series of underwater experiments were carried out in a controlled environment to test the standard motion patterns of the AUV with a Proportional-Integral-Derivative (PID) controller. The performance of the PID controller will be used as the baseline for comparison of more advanced control schemes. The experimental results demonstrated that the spherical AUV was able to realize the tested underwater motions with notable performance.
In this work, we present the design, implementation, and testing of an attitude control system based on State Feedback Linearization (FL) of a prototype spherical underwater vehicle. The vehicle is characterized by a manifold design thruster configuration for both locomotion and maneuvering, as well as on a novel pendulum-based passive pitch control mechanism. First, the mechanical design and onboard electronics set up of the spherically shaped hull are introduced. Afterward, a high-fidelity dynamic model of the system is derived for a 6 degree-of-freedom (DOF) underwater vehicle, followed by several experiments that have been performed in a controlled environment to compare the performance of the proposed control method to that of a baseline Proportional-Integral-Derivative (PID) controller. Experimental results demonstrate that while both controllers were able to perform the specified maneuvers, the FL controller outperforms the PID in terms of precision and time response.
Autonomous systems are expected to maintain a dependable operation without human intervention. They are intended to fulfill the mission for which they were deployed, properly handling the disturbances that may affect them. Underwater robots, such as the UX-1 mine explorer developed in the UNEXMIN project, are paradigmatic examples of this need. Underwater robots are affected by both external and internal disturbances that hamper their capability for autonomous operation. Long-term autonomy requires not only the capability of perceiving and properly acting in open environments but also a sufficient degree of robustness and resilience so as to maintain and recover the operational functionality of the system when disturbed by unexpected events. In this article, we analyze the operational conditions for autonomous underwater robots with a special emphasis on the UX-1 miner explorer. We then describe a knowledge-based self-awareness and metacontrol subsystem that enables the autonomous reconfiguration of the robot subsystems to keep mission-oriented capability. This resilience augmenting solution is based on the deep modeling of the functional architecture of the autonomous robot in combination with ontological reasoning to allow self-diagnosis and reconfiguration during operation. This mechanism can transparently use robot functional redundancy to ensure mission satisfaction, even in the presence of faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.