We consider hypercyclic composition operators on H(C n ) which can be obtained from the translation operator using polynomial automorphisms of C n . In particular we show that if CS is a hypercyclic operator for an affine automorphism S on H(C n ), then S = Θ • (I + b) • Θ −1 + a for some polynomial automorphism Θ and vectors a and b, where I is the identity operator. Finally, we prove the hypercyclicity of ''symmetric translations'' on a space of symmetric analytic functions on 1.
In this paper, we extend complex polynomial dynamics to a set of multisets endowed with some ring operations (the metric ring of multisets associated with supersymmetric polynomials of infinitely many variables). Some new properties of the ring of multisets are established and a homomorphism to a function ring is constructed. Using complex homomorphisms on the ring of multisets, we proposed a method of investigations of polynomial dynamics over this ring by reducing them to a finite number of scalarvalued polynomial dynamics. An estimation of the number of such scalar-valued polynomial dynamics is established. As an important example, we considered an analogue of the logistic map, defined on a subring of multisets consisting of positive numbers in the interval [0, 1]. Some possible application to study the natural market development process in a competitive environment is proposed. In particular, it is shown that using the multiset approach, we can have a model that takes into account credit debt and reinvestments. Some numerical examples of logistic maps for different growth rate multiset [r] are considered. Note that the growth rate [r] may contain both "positive" and "negative" components and the examples demonstrate the influences of these components on the dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.