Microglia are the main immune cells in the brain and have roles in brain homeostasis and neurological diseases. Mechanisms underlying microglia–neuron communication remain elusive. Here, we identified an interaction site between neuronal cell bodies and microglial processes in mouse and human brain. Somatic microglia–neuron junctions have a specialized nanoarchitecture optimized for purinergic signaling. Activity of neuronal mitochondria was linked with microglial junction formation, which was induced rapidly in response to neuronal activation and blocked by inhibition of P2Y12 receptors. Brain injury–induced changes at somatic junctions triggered P2Y12 receptor–dependent microglial neuroprotection, regulating neuronal calcium load and functional connectivity. Thus, microglial processes at these junctions could potentially monitor and protect neuronal functions.
Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful inward transmembrane currents, mainly localized to the supragranular layers. Neuronal firing in the up-state was sparse and the average discharge rate of single cells was less than expected from animal studies. Action potentials at up-state onset were synchronized within +/-10 ms across all cortical layers, suggesting that any layer could initiate firing at up-state onset. These findings provide strong direct experimental evidence that slow wave activity in humans is characterized by hyperpolarizing currents associated with suppressed cell firing, alternating with high levels of oscillatory synaptic/transmembrane activity associated with increased cell firing. Our results emphasize the major involvement of supragranular layers in the genesis of slow wave activity.
Endocannabinoid signaling is a key regulator of synaptic neurotransmission throughout the brain. Compelling evidence shows that its perturbation leads to development of epileptic seizures, thus indicating that endocannabinoids play an intrinsic protective role in suppressing pathologic neuronal excitability. To elucidate whether long-term reorganization of endocannabinoid signaling occurs in epileptic patients, we performed comparative expression profiling along with quantitative electron microscopic analysis in control (postmortem samples from subjects with no signs of neurological disorders) and epileptic (surgically removed from patients with intractable temporal lobe epilepsy) hippocampal tissue. Quantitative PCR measurements revealed that CB 1 cannabinoid receptor mRNA was downregulated to one-third of its control value in epileptic hippocampus. Likewise, the cannabinoid receptor-interacting protein-1a mRNA was decreased, whereas 1b isoform levels were unaltered. Expression of diacylglycerol lipase-␣, an enzyme responsible for 2-arachidonoylglycerol synthesis, was also reduced by ϳ60%, whereas its related  isoform levels were unchanged. Expression level of N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D and fatty acid amide hydrolase, metabolic enzymes of anandamide, and 2-arachidonoylglycerol's degrading enzyme monoacylglycerol lipase did not change. The density of CB 1 immunolabeling was also decreased in epileptic hippocampus, predominantly in the dentate gyrus, where quantitative electron microscopic analysis did not reveal changes in the ratio of CB 1 -positive GABAergic boutons, but uncovered robust reduction in the fraction of CB 1 -positive glutamatergic axon terminals. These findings show that a neuroprotective machinery involving endocannabinoids is impaired in epileptic human hippocampus and imply that downregulation of CB 1 receptors and related molecular components of the endocannabinoid system may facilitate the deleterious effects of increased network excitability.
Abstract-Cannabinoids have been shown to disrupt memory processes in mammals including humans. Although the CB1 neuronal cannabinoid receptor was identified several years ago, neuronal network mechanisms mediating cannabinoid effects are still controversial in animals, and even more obscure in humans. In the present study, the localization of CB1 receptors was investigated at the cellular and subcellular levels in the human hippocampus, using control post mortem and epileptic lobectomy tissue. The latter tissue was also used for [ 3 H]GABA release experiments, testing the predictions of the anatomical data. Detectable expression of CB1 was confined to interneurons, most of which were found to be cholecystokinin-containing basket cells. CB1-positive cell bodies showed immunostaining in their perinuclear cytoplasm, but not in their somadendritic plasmamembrane. CB1-immunoreactive axon terminals densely covered the entire hippocampus, forming symmetrical synapses characteristic of GABAergic boutons. Human temporal lobectomy samples were used in the release experiments, as they were similar to the controls regarding cellular and subcellular distribution of CB1 receptors. We found that the CB1 receptor agonist, WIN 55,212-2, strongly reduced [ 3 H]GABA release, and this effect was fully prevented by the specific CB1 receptor antagonist SR 141716A.This unique expression pattern and the presynaptic modulation of GABA release suggests a conserved role for CB1 receptors in controlling inhibitory networks of the hippocampus that are responsible for the generation and maintenance of fast and slow oscillatory patterns. Therefore, a likely mechanism by which cannabinoids may impair memory and associational processes is an alteration of the fine-tuning of synchronized, rhythmic population events. ᭧ 2000 IBRO. Published by Elsevier Science Ltd. All rights reserved.Key words: CB1 receptor, cholecystokinin, presynaptic, synchronization, memory, release.Most behavioral effects of the active compound of marijuana and hashish are mediated by the CB1 cannabinoid receptor (CB1). 23 Although the impacts of cannabinoid-consumption on human and animal behaviour are well known, 1,3,7,43 the underlying physiological processes and the precise sites of cannabinoid actions in neural networks remain to be identified. The hippocampal formation is one of the brain areas with the highest level of CB1 receptor expression. 18,26,29 In accordance, at the behavioral level, cannabinoids typically interfere with hippocampal functions, i.e. they disrupt memory consolidation and associations both in humans and animals. 3,17 Although several recent experiments attempted to determine the mechanisms of cannabinoid action and the precise cellular and subcellular localization of the CB1 receptor in the rodent and primate hippocampus, the data they provide are inconsistent. 4,20,27,31,34,35,38,44,45 In the rodent hippocampus, a specific class of GABAergic interneurons was shown to express CB1 receptors. 20,27,45 Detailed electron microscopic investigation rev...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.