Summary:Purpose: Valproate (VPA) is an extensively used drug in the therapy of epilepsies. One of the most frequently reported side effects of VPA is hemorrhagic diathesis. Some authors emphasized the decreased platelet count as the basis of VPA-induced hemorrhagic diathesis, but some reports suggested that a significant proportion of patients with normal platelet count may still have an altered platelet function. The mechanism of the VPA-induced platelet dysfunction has not yet been elucidated. A determining element of platelet functions is the arachidonate cascade. Present ex vivo experiments were designed to determine whether a relation exists between the incidence of hemostasis caused by VPA and the effect of this drug on the arachidonate cascade of platelets.Methods: Platelets were isolated from patients receiving long-term VPA treatment (serum level, 36.04 f 16.12 pg/ml; n = 10) or carbamazepine (CBZ) treatment (serum level, 5.24 + 2.67 yg/ml; n = 10) and were labeled with ['4C]arachidonic acid. (CBZ-treated patients were chosen as a control group, because CBZ causes blood dyscrasias similar to those elicited by VPA, but there has been no report that CBZ induces a platelet dysfunction.) The ''C-eicosanoids were separated by means of overpressure thin-layer chromatography and determined quantitatively by liquid scintillation.Results: Even when the mean plasma concentration of the drug was low, VPA treatment reduced the activity of the arachidonate cascade in platelets. VPA effectively inhibited the cyclooxygenase pathway and the synthesis of the strong platelet aggregator thromboxane A,.Conclusions: Inhibition of the platelet arachidonate cascade may contribute to the platelet-function alterations caused by VPA.
Kisspeptin has been implicated in cardiovascular control. Eicosanoids play a crucial role in the activation of platelets and the regulation of vascular tone. In the present study, we investigated the effect of kisspeptins on eicosanoid synthesis in platelets and aorta in vitro. Platelets and aorta were isolated from Wistar-Kyoto rats. After preincubation with different doses of kisspeptin, samples were incubated with [1-(14)C]arachidonic acid (0.172 pmol/mL) in tissue culture Medium 199. The amount of labeled eicosanoids was measured with liquid scintillation, after separation with overpressure thin-layer chromatography. Kisspeptin-13 stimulated the thromboxane synthesis. The dose-response curve was bell-shaped and the most effective concentration was 2.5 × 10(-8) mol/L, inducing a 27% increase. Lipoxygenase products of platelets displayed a dose-dependent elevation up to the dose of 5 × 10(-8) mol/L. In the aorta, kisspeptin-13 induced a marked elevation in the production of 6-keto-prostaglandin F1α, the stable metabolite of prostacyclin, and lipoxygenase products. Different effects of kisspeptin on cyclooxygenase and lipoxygenase products indicate that beyond intracellular Ca(2+) mobilization, other signaling pathways might also contribute to its actions. Our data suggest that kisspeptin, through the alteration of eicosanoid synthesis in platelets and aorta, may play a physiologic and (or) pathologic role in the regulation of vascular tone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.