How are ownership relationships distributed in the geographical space? Is physical proximity a significant factor in investment decisions? What is the impact of the capital city? How can the structure of investment patterns characterize the attractiveness and development of economic regions? To explore these issues, we analyze the network of company ownership in Hungary and determine how are connections are distributed in geographical space. Based on the calculation of the internal and external linking probabilities, we propose several measures to evaluate the attractiveness of towns and geographic regions. Community detection based on several null models indicates that modules of the network coincide with administrative regions, in which Budapest is the absolute centre, and where county centres function as hubs. Gravity model-based modularity analysis highlights that, besides the strong attraction of Budapest, geographical distance has a significant influence over the frequency of connections and the target nodes play the most significant role in link formation, which confirms that the analysis of the directed company-ownership network gives a good indication of regional attractiveness.
This paper investigates the role of socioeconomic considerations in the formation of official COVID-19 reports. To this end, we employ a dataset that contains 1159 pre-processed indicators from the World Bank Group GovData360 and TCdata360 platforms and an additional 8 COVID-19 variables generated based on reports from 138 countries. During the analysis, a rank-correlation-based complex method is used to identify the time- and space-varying relations between pandemic variables and the main topics of World Bank Group platforms. The results not only draw attention to the importance of factors such as air traffic, tourism, and corruption in report formation but also support further discipline-specific research by mapping and monitoring a wide range of such relationships. To this end, a source code written in R language is attached that allows for the customization of the analysis and provides up-to-date results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.